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Abstract

Advances in neuroscience research provide an unprecedented opportunity to iden-
tify the etiopathogenesis of mental health disorders. Yet, it has proven difficult
to find reliable associations between neurobiological phenotypes and real-world
mental health experiences, particularly among youth. This Perspective addresses
two pervasive assumptions inherent to many functional neuroimaging studies that
diminish the predictivity of the data. First, studies assume that aligning data
across individuals based on the anatomy of the brain is sufficient to align their
brain function. Individual brains vary meaningfully in the localization of func-
tions, particularly across development and in clinical populations; neglecting this
variability in functional neuroanatomy risks washing out rich and reliable patterns
of individual-specific information. Second, studies assume that the underlying sig-
nal embedded in brain measurements over space and time can be modeled with
simple transformations from high dimensions (i.e., voxels) to low or single dimen-
sions (i.e., regional averages). However, the latent structure of brain activity and
behavior is often complex and nonlinear. To overcome these assumptions, we sug-
gest alternative methodological approaches that have yielded novel insights into
the neurobiology of cognition and mental health symptoms in adolescence. Build-
ing robust predictive models of psychiatric problems requires methodology that
can capture the richness and complexity of the brain and behavior.
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Main

Approximately half the world’s population will experience at least one mental health
disorder during their lifespan [1]. The majority of such disorders onset during the
second decade of life [1]. Adolescents who experience mental health disorders are at
greater risk of negative outcomes in adulthood including chronic mental and physical
health challenges, social functioning issues, lower educational attainment, and involve-
ment with the legal system [2–4]. Among people aged 10–24, mental health disorders
are the leading cause of disability across the world [5]. Accordingly, understanding the
neurobiological factors associated with mental health disorders during adolescence has
become a major priority of translational research over the past two decades [6–9].

Many aspects of brain functioning have been implicated in the development of
mental health disorders, and there have been significant investments in studying these
neurobiological factors across adolescence [10–13]. These studies mainly employ func-
tional magnetic resonance imaging (fMRI), which affords noninvasive, whole-brain
coverage at a high spatial resolution with minimal risk. fMRI studies have highlighted
changes in brain circuitry related to specific psychological states (e.g., fear or pain) and
cognitive processes (e.g., attention or memory) that are commonly altered in mental
health disorders [14–19].

These successes in identifying neural signatures of psychological states and pro-
cesses have inspired confidence that fMRI could be used as a diagnostic tool for
mental health disorders. Yet, isolating reliable brain-based biomarkers of mental health
problems has proven far more challenging than anticipated [7, 20–25]. Recognized hin-
drances include: (1) small and/or homogeneous samples of participants [17, 26, 27], (2)
inadequate predictive modeling approaches or parameterization [23, 28–31], and (3)
uninformative or unreliable dependent variables (i.e., clinical ratings or diagnoses) [32].
Indeed, larger, more diverse samples and more sophisticated analytic approaches have
strengthened links between brain measures and individual differences in behavioral
measures [23, 33–35]. However, some studies with comparable samples and approaches
have yielded limited insight into mental health experience, with most studies report-
ing null or small effects [8, 21, 36]. Because some individual differences in behavior can
be predicted from brain measures in large-scale developmental fMRI studies, the data
are clearly not devoid of signal, but appear inadequately posed for clinical applications
[37–40].

In this Perspective, we argue that the difficulty of identifying robust relation-
ships between brain and mental health experiences arises from the choices made by
researchers about how to represent their data. We discuss the most common ways
fMRI data are prepared and describe data properties that make these steps suboptimal
for predicting adolescent mental health. Specifically, we highlight two key assump-
tions made in many fMRI analyses that limit the field’s ability to predict brain-mental
health associations. The first assumption is that aligning brain anatomy is sufficient
to align brain function. Functional-anatomical correspondence in the brain is highly
variable in the general adult population, and even more variable in developmental
and clinical populations [41–43]; when this variability remains unaddressed, it lim-
its the informativeness of brain activity for detecting sources of individual differences
in behavior across the population [16, 42, 44]. The second assumption is that linear
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aggregation methods, which use averaging or other linear combinations to combine
fMRI samples across space or time to improve signal quality, are sufficient to capture
the complexity of spatiotemporal signals across brain measurements. However, brain
activity is better captured with nonlinear models that are robust to noise [29, 45–49].

To address these two assumptions, we take guidance from advances in the field
of cognitive neuroscience, namely in the building and application of computational
tools to mitigate the noise and variability of fMRI data. By incorporating techniques
from machine learning and related fields, cognitive neuroscientists have shown that
fMRI signals can be linked robustly with complex behaviors and nuanced cognitive
processing, at both individual and group levels [14, 16, 50]. We anticipate that adapting
these computational tools here will afford analogous improvements in the identification
of brain-based biomarkers of mental health experiences in the developing brain.

Current approaches in brain-behavior association
studies

Collecting fMRI data

fMRI data are collected while participants lie in an MRI scanner and rest or perform
tasks that engage specific brain functions. fMRI captures the blood oxygenation level-
dependent (BOLD) signal, which is a slow, indirect metabolic measurement of neuronal
activity. The spatial unit of measurement for fMRI is a voxel (i.e., volumetric pixel)
covering approximately 1–3 mm of space in each of three dimensions. fMRI measures
the brain every 1–2 s, a rate substantially slower than neuronal firing. The resulting
fMRI volumes are incredibly high dimensional: approximately 100,000 voxels are col-
lected across the entire brain for each of hundreds of samples in a session. Despite
the complexity of these signals, fMRI has emerged as the most prominent neuroimag-
ing method for studying brain-behavioral associations for at least three reasons: (1)
fMRI generates high-resolution whole-brain images, capturing activity patterns both
globally across large-scale brain networks and locally within spatially resolved areas;
(2) fMRI is safe and noninvasive, thus accessible to youth and adult participants with
a variety of lived experiences; and (3) fMRI is a common tool readily available at
research and medical institutes globally [51, 52].

Establishing population-wide brain activity correspondences

A crucial step in fMRI analysis is establishing a correspondence between brain activ-
ity features across participants. This is commonly done by registering the data from
all participants to a common anatomical template (e.g., Talairach space [53] or Mon-
treal Neurological Institute (MNI) space [54]) based on major anatomical landmarks
[55]. However, landmark-based alignment has limitations, particularly in aligning
cortical features (e.g., sulci, gyri). Another form of anatomical alignment, cortical
surface-based alignment, can improve the accuracy of registration by treating the
cerebral cortex as a sheet and finding an alignment that matches sulcal and gyral pat-
terns across brains [56]. Compared with landmark-based alignment, surface-alignment
approaches more accurately account for morphological and topological properties of
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B.     Approaches to brain-based predictive models

A.     Studying individual di�erences in brain function and behavior
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Fig. 1 Brain-behavior relationships. (A) Characterizing relationships between brain and behav-
ioral measures begins with data collection. Brain measures can include activation or functional
connectivity and are often collected with functional magnetic resonance imaging (fMRI). Common
behavioral measures include a battery of cognitive tasks and/or self-report measures meant to charac-
terize a participant’s cognitive functioning and/or mental health experiences. (B) Models that predict
behavioral measures from brain measures commonly represent brain activity in one of two ways: a
single measurement from averaging across voxels in a region of interest (left) or a pattern of mea-
surements from multiple voxels (right). These representations offer two levels of granularity in brain
measurements, commonly referred to as univariate and multivariate. Models using univariate infor-
mation fit a single regression weight per region, and models using multivariate information fit multiple
regression weights per region (here, one per voxel). Prediction models should be cross-validated —
trained on data from one set of participants and evaluated on data from a separate set of participants.
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the brain, better align anatomy across youth and adults [57, 58], and reflect the
behaviorally meaningful and predictable ways that cortical anatomy develops [59, 60].

Yet, even if one could perfectly align brain anatomy across participants, mis-
matches in brain function would remain. In other words, different brains perform the
same function in slightly different anatomical locations [61–63]. Researchers commonly
mitigate these misalignments in brain function by spatially smoothing the data during
preprocessing or by averaging signals across voxels within large, predefined cortical
areas. This latter “region of interest” (ROI) approach blurs signals at the individ-
ual level to increase functional overlap across individuals, de-emphasizing fine-grained
information specific to an individual in favor of coarse correspondence across individ-
uals. The ROI approach is the basis of most brain-behavior association studies to date
[64, 65].

Brain measures used for predictive modeling

Traditional ROI analyses extract activity from a brain region selected a priori and
relate that averaged signal to behavioral variability across participants, yet cognitive
processes commonly implicated in mental health disorders (e.g., decision-making or
executive control) are related to changes spanning distributed networks of brain regions
and their connections. A variety of approaches examine alterations in network-level and
whole-brain functional connectivity (i.e., the strength of co-activation of different brain
areas) associated with mental health experiences [17, 20, 66, 67]. These approaches can
be considered multivariate (i.e., capturing connections between many pairs of regions),
but most also carry assumptions of ROI analyses through the use of parcellation —
an atlas that carves up the brain into discrete regions (“parcels”). The activity in each
parcel is averaged across voxels and then functional connectivity is calculated as the
pairwise correlation between parcels [68–70].

For whole-brain analyses, the parcellation approach offers two advantages. First,
as with other ROI approaches, it improves the alignment of functions across brains
by allowing for spatial variability in voxel localization. Second, and more specific to
parcellation, it reduces the dimensionality of the data from voxels to parcels (3–4 orders
of magnitude reduction) in a way that respects the underlying biology that guided the
definition of parcels (e.g., based on resting-state functional connectivity, histology, or
other anatomical features) [67]. Indeed, this dimensionality reduction has made whole-
brain analyses more computationally tractable, which is particularly important when
working with large sample sizes. Most common parcellations are defined using resting-
state functional connectivity from non-clinical, adult brains [67], though developmental
and individualized parcellations are gaining traction [71–74].

Predictive models using parcellation-based whole-brain functional connectivity
have made progress in understanding individual differences in cognition and behavior
among non-clinical youth and adults [39, 73, 74]. Yet, few studies have gener-
ated models that successfully predict mental health experiences [25, 39, 75]. Some
researchers have proposed that these models fail because of inadequate training sam-
ples [27, 28, 34], issues with model and parameter selection [27, 28, 30, 76], or low
quality or sparse dependent variables (e.g., clinical ratings or diagnoses) [32].
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Rarely has the quality of the independent variable — measures of brain function
— been considered as the culprit. That is, the way functional brain measures are rep-
resented can directly support or hinder prediction of individual differences in mental
health experiences. By representing brain activity coarsely with parcels, meaningful
variability related to mental health may be washed out. Studies in adults and adoles-
cents have shown that variability in brain activity is most pronounced and reliable at
a fine, voxel-scale level of spatial detail [40, 77–81]. In the following section, we dis-
cuss the value of moving to finer spatial scales in order to reveal reliable individual
differences.

Improving alignment of brain function across
participants

The first assumption to be addressed is that aligning brain anatomy is sufficient
for aligning brain function across individuals. Although functional brain areas and
networks are organized similarly across individuals at a coarse level, they vary sig-
nificantly between individuals at the finer spatial scale of voxels [62, 77, 78, 80].
Individual variability in activity is reliable and predictable within individuals but
becomes diluted with group-level aggregation (e.g., ROIs, parcellations) and spatial
smoothing [40, 77, 78, 80, 82]. Furthermore, the information encoded in fine-scale cor-
tical activity affords clearer decoding of psychological states relative to coarse activity
[14, 80, 81, 83]. This reliable signals — commonly obscured by anatomical alignment
and averaging — can be retained with functional alignment.

Functional alignment is a kind of fMRI analysis that maximizes the benefits of
both group-level aggregation and fine-scale individual variability. The intuition behind
functional alignment stems from the findings that individuals processing the same
information (e.g., watching the same movie) show synchronized brain activity in many
brain regions [84]. Using this evoked synchrony, functional alignment algorithms learn
a shared functional “template” that matches voxels across participants based on the
similarity of their activity time courses rather than their anatomical coordinates.

Early functional alignment work showed all participants the same long, time-locked
stimulus to determine functional similarity for learning the shared template [62]. This
kind of fMRI paradigm is less feasible with adolescents or clinical populations, whereas
short (5-10 min) movies or resting-state scans are more accessible [85]. The advantage
of using movies (or stories) is that the stimulus can drive functions that may be
of interest to align (e.g., sensory, affective, cognitive). Although resting-state fMRI
doesn’t evoke these common responses, shared patterns of connectivity do emerge at
rest and can be used to derive functional templates for alignment [86, 87]. Although it
may not capture all functions of interest, connectivity-based alignment is more flexible
than response-based alignment, as it can be defined from tasks of differing lengths and
designs, or from resting-state or sleeping data.

Why would improving the alignment of functions across brains help in the study
of individual differences in mental health? It may initially seem counterintuitive
that improved alignment would highlight differences in brain activity or connec-
tivity. However, the functional alignment of fine-scale brain measures to a shared
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template suppresses undesirable or unreliable sources of variation (e.g., in functional-
anatomical correspondence, head motion, or physiological noise). Thus, the residual
inter-individual variation after functional alignment is more reliable than before
alignment [40, 79, 82, 88]. These residuals have been used to predict differences in
information encoding [79, 89], narrative processing [90–93], and measures of cogni-
tion [22, 82], even among youth [40]. These initial applications suggest that functional
alignment could similarly benefit predictive models of mental health experiences
[17, 22, 38].

Implementing functional alignment

Functional alignment is performed on BOLD timeseries data typically after basic
fMRI preprocessing (e.g., using fMRIPrep [94]), including registration to a standard
anatomical template (e.g., MNI) and regression of nuisance parameters (e.g., motion,
physiological signals). However, these steps are not required and may not be advisable
depending on your analysis goals. Generally speaking, spatial smoothing and temporal
filtering are not required (or necessarily helpful) for functional alignment [95].

The prepared BOLD data are functionally aligned in two steps: (1) the identifica-
tion of common signals across participants to create a “shared functional template”,
and (2) the calculation of transformation matrices to align each participant’s functional
signals to this shared functional template. The shared functional template and trans-
formation matrices can be computed by providing whole-brain activity patterns or by
dividing and conquering with separate templates and transformations for regions of a
brain atlas [96] or searchlight analysis [95]. The latter approach of learning and apply-
ing transformations to spatially constrained regions, as opposed to the entire brain at
once, aids interpretability of functional alignment as the input signals are known to
originate from roughly the same anatomical areas across brains. In other words, the
remixing of signals happens only at the fine scale and conserves the coarse anatomical
structure at the whole-brain level. There are several methods that follow this formula
with different computational algorithms and constraints. Below, we outline a few of
these approaches, their use cases and strengths, and provide basic implementations
(Box 1).

Hyperalignment and high-dimensional models

Consider an experiment where each participant views the same time-locked, dynamic
stimulus (e.g., a movie) in the scanner. The resulting fMRI data would comprise
the activity of v voxels across t timepoints (the length of the experiment). During
hyperalignment, the pattern of brain activity across voxels at each timepoint can be
formulated as vector in a v-dimensional space. Each axis vi of that space is a voxel
and the vector’s coordinate on vi is the BOLD amplitude of the corresponding voxel
at a given timepoint. The next timepoint is also a vector, and so on, resulting in a
trajectory of t vectors (one for each timepoint) through the v-dimensional space over
time. This trajectory represents the coordinated activity of individual voxels across
the course of the experiment.
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This vectorization is different than standard fMRI analysis approaches that treat
brain activity as one-dimensional (i.e., a single voxel or an ROI average) or three-
dimensional (i.e., the brain’s x,y,z anatomical coordinates). Instead, each participant
has their own v-dimensional information space, and their trajectory through this
space defines the geometry of their brain states while viewing the stimulus. Because
all participants viewed the same stimulus, brain regions related to processing that
stimulus may exhibit a similar brain-state geometry across participants. In turn, this
enables the identification of a shared v-dimensional space that results from the trans-
formation of each participant’s space. In hyperalignment, the transformations are
identified with singular value decomposition, which minimizes the Frobenius norm
between a source and target matrix (e.g., a participant’s data matrix and the shared
functional template). The resulting transformations minimize the distance of activ-
ity vectors for corresponding timepoints across participants while maintaining the
distance between vectors over time within participant, maximizing the similarity of
participants’ trajectories [42, 62].

Hyperalignment achieves this objective using generalized Procrustes analysis to
define a group-level shared functional template and individual transformations to
map participants to this template. The Procrustean transformation is an orthogonal
transformation (i.e., allows rotations and reflections) that minimizes the Euclidean
distance between two data matrices with the same number of samples t and features
v (e.g., fMRI datasets with the same number of timepoints and voxels). These trans-
formations are derived by optimizing for maximal similarity in the representational
geometry, such as correlations or covariance structures, between the neural activity
patterns of different individuals. Generalized Procrustes analysis finds these transfor-
mations iteratively at the group level, by aligning each new participant’s data matrix
to the average of the previously aligned matrices, which serves as the template. After
this iterative identification of the template, a final set of Procrustes transformations
are derived to align data from each participant’s data to this final template [42].

Hyperalignment can be performed with any brain measure with a geometric
representational structure. As noted earlier, although traditionally used to align
stimulus-evoked voxel responses over time (i.e., when viewing the same movie or story)
[62, 79, 95], hyperalignment has also been used to align functional connectivity [86].
The vectors in the v-dimensional space represent connectivity strength with each seed
voxel or ROI. As before, each axis vi of this space is a voxel, but the vector’s coordi-
nate on vi is the Pearson correlation coefficient (or other similarity/distance metric) of
voxel i’s BOLD timeseries with that of the seed voxel or region. In this case, instead of
aligning the geometry of brain-state trajectories, hyperalignment identifies a shared v-
dimensional space that aligns the geometry of functional connectivity. In practice, this
often results in comparable improvements for downstream analyses as aligning based
on synchronized stimuli, because connectivity patterns are rich, consistent within
individual, and informative at the group level [41, 86, 97].

After hyperalignment identifies a shared functional template, data from new par-
ticipants can be mapped to that template, enabling robust cross-validation and
assessment of generalization [40, 98, 99]. Alignment to the shared template increases
the reliability and behavioral relevance of differences between an individual’s brain and
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the group, as shown in resting-state and tasked-based functional connectivity in adults
[82] and children [40]. Additionally, the weights of the transformation matrices from
a participant’s brain to the shared template can capture mental health-related indi-
vidual differences (e.g., transdiagnostic biomarkers of psychosis [88]). Hyperalignment
is an anatomically interpretable method, as the shared template and transformation
matrices retain the input (e.g., voxel) dimensions, so the hyperaligned data can be
projected back onto the brain to evaluate where functional differences originate.

Shared response model and low-dimensional solutions

The Procrustes-based hyperalignment approach generally assumes a high-dimensional
shared functional template, where k, the dimensionality of the resulting model,
matches the number of inputs (i.e., voxels) v. The number of dimensions k of the
shared template in hyperalignment can be reduced from v to capture shared infor-
mation in lower dimensions, reduce noise, and prevent overfitting [62, 100]. This
is often performed with principal component analysis (PCA) over the shared tem-
plate, after fitting the voxel dimensions. Notably, using PCA does not outperform the
high-dimensional solution, but does improve computational tractability [62, 95].

The shared response model (SRM) approach formulates its shared template as
an inherently low-dimensional signal space. That is, it pre-specifies a lower dimen-
sionality (k < v) for the shared template, where the dimensionality k can be tuned
as a hyperparameter [89]. SRM uses a probabilistic latent-factor model to decom-
pose each participant’s BOLD activity into two matrices: a low-dimensional shared
response matrix S ∈ Rk×t that is common across participants (i.e., the shared func-
tional template) and a participant-specific, orthonormal basis matrix Wi ∈ Rv×k (i.e.,
the transformation matrix from v voxels onto k features for participant i). These two
matrices are fit jointly over a number of iterations. First, the transformation matrices
Wi and shared response S are randomly initialized, and they are jointly optimized
using an expectation-maximization scheme. After being fit, a new participant j who
completed the same task can be mapped to S to derive their own transformation matri-
ces Wj . Once the transformation weights have been determined, they are re-used to
align different samples (e.g., separate timepoints or tasks) from the same participants
[89].

SRM has been used to align features of brain activity driven by a common stimulus
in a variety of naturalistic paradigms (e.g., movies or narratives). In this aligned space,
individual differences related to stimulus processing also become more pronounced.
For example, SRM has helped reveal features of stimulus-evoked brain activity related
to cognitive development [101], affective processing [102], event memory [92], semantic
representations [93], and psychological states like paranoia [90]. Within psychiatry, a
few studies have applied SRM to distinguish brain pediatric anxiety [103] and craving
and recovery from substance use disorders [104].

Though alignment with SRM can highlight how individuals differ from the group
model, it may be suboptimal for instances of substantial, phenotypically driven vari-
ability (e.g., comparing infants with adults) because of its objective of optimizing a
shared response and warping participants to fit to that template [16]. Robust SRM
(RSRM) addresses this limitation by adding another factorization to the separate
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shared and individual components of brain activity. In RSRM, the individual compo-
nents are sparse and therefore assume infrequent individual deviations from the group
[105]. Like hyperalignment, the family of SRM approaches — which traditionally lever-
age data collected with time-locked stimuli — can be generalized to data represented
as functional connectivity [87].

Due to its low-dimensional template formulation, SRM can be used more flexibly
than hyperalignment, such as when the signals to be aligned have different dimen-
sionality because of variation in brain volume or the use of personalized networks or
parcellations [73]. SRM also relaxes the assumption that brains should start off aligned
anatomically, which makes SRM useful for functional alignment across fundamentally
different brains, such as stages of development, species, or neurological diseases.

Overall, the early applications of these methods suggest that functional align-
ment will be useful for studying individual differences in mental health experience
in three ways. First, functional alignment can be used as a preprocessing step to
address functional-anatomical mismatches at a population level [40]. Second, the
shared templates can be analyzed across different demographics or diagnostic criteria
[101, 103, 104]. Finally, the transformation weights between individuals and a shared
template can be assessed to gauge topographic shifts in the anatomical localization of
brain functions that relate to behavioral or experiential variation [88].

Uncovering the low-dimensional structure of
functional signals

Modeling latent signals from high-dimensional data

The second assumption of many fMRI analyses is that linear aggregation methods well
approximate brain signal structure. fMRI produces enormously high-dimensional data:
brain activity measured in approximately 100,000 voxels at each timepoint, with often
hundreds of timepoints collected per scan. One of the main advantages of fMRI is that,
compared with other noninvasive brain imaging methods (e.g., EEG), fMRI voxels
have higher spatial resolution (typically 1.5−3 mm isotropic), allowing for fine-grained
analyses of brain activity in vivo. Yet, even with the smallest voxel size possible, each
voxel captures the activity of thousands of neurons. Furthermore, the BOLD signal
measured at each voxel is orders of magnitude slower than the spiking activity and
electrical potentials of neurons underlying a vascular response. The substantial spatial
and temporal autocorrelation of neuronal signals measured by fMRI makes individual
measurements across space or time redundant and explainable in far fewer, simpler
dimensions than initially measured during data acquisition.

Redundancy is a common property of neural population activity [106, 107]. Con-
sider recording from a population of 100 neurons that contribute to behavior y. Given
synaptic connections among those neurons, the firing of each neuron is not indepen-
dent of the others — their firing rates would co-vary and overlap in ways such that
y can be predicted by k signals, where k << 100 neurons. These k signals are latent
in that they are not directly measurable (i.e., they are not simply the activity of k
specific neurons), but can be modeled mathematically by considering the patterns by

10



A.   Typical group-level analysis

C.     Uncovering meaningful individual di�erences

Typical group
analysis

Functional
alignment

Co
rr

el
at

io
n

Testing similarity in brain
activation across participants

B.     Functional alignment

Aggregated activation maps

group intersection
individual spread

ov
er

la
p 

w
ith

 g
ro

up
 in

te
rs

ec
tio

n 
(%

)

1 2 3 4
Participant

Aggregate individual participants’ activity into standard anatomical space

Transform indiviual participants’ activity into standard functional space

Shared functional 
template*

R1

R4

R3

R2

Step 1: Learn individual transformations 
R to a shared functional template

*de�ned with cross-
validation on separate task, 

samples, or participants

Step 2: Apply R to align individual activity
to shared functional template

Aggregated activation after alignment

ov
er

la
p 

w
ith

 g
ro

up
 

in
te

rs
ec

tio
n 

(%
)

1 2 3 4
Participant

R4

R3

R1

R2

Re
lia

bi
lit

y 

Assessing reliability of individual di�erences 
in functional connectivity across data subsets

Typical group
analysis

Functional
alignment

Ac
cu

ra
cy

Prediction of externalizing problems
from functional connectivity 

Typical group
analysis

Functional
alignment

group intersection
individual spread

Fig. 2 Anatomical versus functional alignment. (A) The typical approach to group-level fMRI
analyses begins with the brain activation maps from all participants aligned to a standard anatomical
template. After this anatomical alignment, the activation profiles are unlikely to be fully aligned
across participants. Each participant’s activation has a different amount and location of overlap
with the group intersection, suggesting that modeling only the group intersection misses individual
differences. (B) Functional alignment builds upon the typical group-level analysis after anatomical
alignment. The first step is to define a shared functional template, which is determined with cross-
validation or on data from separate tasks or participants. This functional template represents brain
activity or connectivity patterns shared across participants. There are several algorithms for defining
shared functional templates and for deriving transformation matrices to align an individual‘s brain
activity in anatomical space to the shared functional template. This functional alignment leads to
greater overlap of participants with the group intersection, while variation across participants in their
match to the functional template retains individual differences in the shared space. (C) Example
analyses showing that functional alignment increases: the temporal correlation of cortical responses
(left; adapted from [47]), the reliability of individual differences in functional connectivity across
separate runs of resting-state data (middle; adapted from [40]), and the accuracy of predictions of
individual differences in externalizing symptoms (right; unpublished data).

which the neurons fire together (i.e., their covariance). Using fMRI to measure neural
activity adds an additional layer of complexity because fMRI as a technique intro-
duces spatial and temporal artifacts. Thus, simplifying or reducing the dimensionality
of fMRI data to model its latent signals can help sift through the various sources of
measurement noise and neuronal co-modulation to access a clearer representation of
a brain area’s overall activity.
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Linear dimensionality reduction

The most common approach to simplifying high-dimensional neuroimaging data is
with ROIs or parcellations, as discussed earlier. They reduce complexity by down-
sampling the data in space, but they assume that each region has homogeneous
signals and that the boundaries of an ROI or parcel reflect meaningful functional
boundaries. Within a single region, voxels may exhibit heterogeneous patterns of activ-
ity that reflect distinct functional sub-networks or interactions with other regions
[67, 78, 108]. Averaging across voxels may obscure individual differences in this
fine-grained structure of neural activity that may be relevant for understanding men-
tal health experiences [52]. This limitation highlights the need for dimensionality
reduction methods that can capture the richness of voxel-level interactions without
collapsing them into a single summary statistic.

Unsupervised dimensionality reduction techniques, such as PCA and indepen-
dent component analysis (ICA), offer nuanced ways to extract features from high-
dimensional data. PCA identifies orthogonal components that explain the maximum
variance in the data, making it useful for identifying dominant activity patterns. ICA
decomposes the data into statistically independent signals, which can reveal distinct
functional networks or sources of signal [66, 109]. These methods provide simplified
multivariate representations of brain measures and have yielded insight into cognition
from fMRI, with limited successful extension to clinical variables [25, 31, 110–112].

Supervised dimensionality reduction techniques, such as canonical correlation anal-
ysis (CCA) or partial least squares regression (PLSR), have been used to reduce
dimensionality of brain measures to maximize association with mental health variables
[113, 114]. Because the dimensionality reduction is trained with supervision (i.e., opti-
mizing for the prediction goal), the resulting embedding may not reflect the intrinsic
latent structure of the brain measures that could arise naturally through unsupervised
methods. Nevertheless, these supervised methods (CCA and PLSR) are similar to the
unsupervised methods above (PCA and ICA) in that they assume linear interactions
among the brain measures (i.e., that the activity of different voxels is linearly related).

Nonlinear dimensionality reduction

Recent work has shown that more complex behaviors are best captured by nonlinear
interactions between brain measurements [49, 115]. A family of nonlinear approaches
called “manifold learning” — which (broadly) attempt to generalize linear dimen-
sionality reduction frameworks to be sensitive to nonlinear structure in data — may
therefore be better equipped for the nature and noise of brain activity measures.

Manifold learning has become increasingly popular over the past decade and has
been used to predict disease outcomes from high-throughput biomedical data (e.g.,
single-cell RNA sequencing and flow cytometry panels) [116–119]. Like unsupervised
linear methods (e.g., PCA, ICA), manifold learning approaches have the goal of
discovering a low-dimensional, denoised projection of the data without the use of pre-
determined labels. Common manifold learning algorithms include diffusion maps [120],
universal manifold approximation and projection (UMAP) [117], t-distributed stochas-
tic neighbor embedding (t-SNE) [121], locally linear embeddings (LLE) [122], and
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potential of heat-diffusion for affinity-based trajectory embedding (PHATE) ([123]).
These manifold learning algorithms uncover additional structure that enables the pre-
diction of nuanced disease information, such as individual patient outcomes from their
flow cytometry patterns [118].

The recent success of manifold learning in characterizing complex biomedical data
and predicting individual differences in disease experience and outcome suggests its
utility in the realm of mental health. We envision applying manifold learning as a final
step of data preparation prior to analysis. We have found that the PHATE method is
robust to many fMRI preprocessing and denoising techniques, including detrending,
filtering, and nuisance regression, as well as spatial smoothing. Recent work has applied
manifold learning to fMRI data in various ways: to uncover individual- and region-
specific dynamics related to cognitive processing [47], to model group-level, whole-
brain functional connectivity patterns across rest and tasks with varying cognitive
loads [45, 124, 125], and to model individual differences in brain activation related
to cognitive and emotional processing during development [48]. These findings show
the versatility of manifold learning (relative to linear dimensionality reduction) when
applied to timeseries fMRI data, whole brain or regional functional connectivity, task
activation weights, and data at the group or individual level [45, 46, 48, 125, 126].

A particular strength of manifold learning is its ability to incorporate multiple data
views (i.e., measurement types). Multi-view manifold learning allows for nonlinear
representations of several unrelated feature sets from matched samples to be weighted
and combined into a single representation [127]. For example, a single-view approach
would consider how a gene expression pattern X results in disease phenotype y, but a
multi-view approach could consider how gene expression X1 interacts with patterns of
protein concentrations X2 to predict y. In other words, multi-view manifolds provide
more comprehensive accounts of the biological processes that inform outcomes because
they consider the interaction of information from diverse sources [128].

We initially developed a multi-view manifold learning algorithm to characterize the
multiple levels of signal properties endogenous to fMRI data that were related to cog-
nitive processes (e.g., perception, narrative comprehension). This temporal-PHATE
(T-PHATE) approach provides two views of fMRI timeseries: one characterizing the
interactions among voxels at each timepoint, and one modeling the temporal dynamics
in each voxel. Combining these two views results in a single representation of the brain
activity that incorporates interactions between both signal properties over space and
time, which proved essential for unveiling how the brain moves through different states
during an experiment [47]. T-PHATE embeddings provide rich, cleaned representa-
tions of participant-specific and behaviorally relevant brain activity dynamics in lower
dimensions. Furthermore, experiment-driven behavioral and cognitive processes were
more clearly reflected in the T-PHATE embeddings of brain activity than in embed-
dings based on a variety of linear and nonlinear dimensionality reduction methods or
ways of including temporal dynamics in a single-view manifold [47].

We then generalized our multi-view manifold learning approach to enable the
modeling of individual differences in behavior and mental health as combination of
endogenous measures (e.g., biological features) and exogenous measures (e.g., environ-
mental features). Many facets of an adolescent’s life inform current and future mental
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health, and, like neurobiology, environments are high-dimensional, complex systems
that have nonlinear relations with mental health experiences [129–132]. We combined
measures of adolescents’ brain activity and measures of their environment (e.g., family
and neighborhood adversity) into a single exogenous-PHATE (E-PHATE) manifold.
This allowed us to test how family and neighborhood features interact with brain
function and predict mental health experience. E-PHATE embeddings that combined
brain activation with environmental information (separately for several subcortical
regions and cortical networks) strongly predicted overall mental health problems and
externalizing and internalizing symptoms cross-sectionally [48].

These E-PHATE embeddings yielded higher accuracy than other approaches —
including spatial averaging, dimensionality reduction with linear or other nonlin-
ear methods, or retaining high-dimensional measures (voxel) — used in the same
brain areas and networks. Moreover, E-PHATE embeddings yielded longitudinal
insight into adolescent mental health experiences: future externalizing symptoms were
well-predicted from embeddings of ventral attention network activation, and future
internalizing symptoms were well-predicted from embeddings of both frontoparietal
and ventral attention network activation [48].

Together, these findings show that individual differences in brain activity related
to cognition, behavior, and mental health experiences can be modeled as variability
along a low-dimensional brain activity manifold. Nonlinear manifolds are particularly
robust to high-dimensional data with high noise, motion, and artifact, making them
ideal for these pervasive features of developmental neuroimaging data. E-PHATE, a
general purpose multi-view manifold learning algorithm, allows us to combine multiple
data sources from the same participants to gain a more holistic picture of factors that
inform mental health risk at present and in the future [48].

Important considerations with manifold learning include (1) the difficulty of cross-
validating nonlinear embeddings or extending latent spaces to samples not seen during
training and (2) the challenge of inverting samples from their embeddings back to the
input space (i.e., specific brain regions or voxels). We recommend applying manifold
learning within spatially constrained regions or networks for questions pertaining to
the contribution of specific areas to a behavioral phenotype. Manifold learning can
be applied to whole-brain data, but interpreting the contributions of individual brain
areas within the embedding is a challenge due to the nonlinear transformation from
the brain to the embedding. Improving interpretability and extensibility are active
areas of investigation in manifold learning and representation learning more generally
[133–135].

Discussion

A major goal of translational neuroimaging research is to establish robust brain-based
predictors of adolescent mental health [6, 7, 17]. The urgency of addressing mental
health issues in adolescence has prompted significant initiatives for neuroimaging data
collection [12, 50]. These initiatives have deepened our understanding of the brain mea-
sures underlying some of the cognitive-affective mechanisms associated with various
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Fig. 3 Simulations of dimensionality reduction. The data in this figure were simulated to resemble
known effects ([48]; see Box 1). (A) Dimensionality reduction pipelines take multiple brain activity
measures per participant (see Figure 1B) and formulate them into a matrix with participants as
samples and brain measures (here, voxels) as features. Pairwise similarities between participants’
brain measures are summarized in an affinity matrix. These pairwise affinities are used to project (or
“embed”) brain measures into a lower-dimensional representation (i.e., a participants-by-dimensions
matrix; here, with two dimensions for visualization). A meaningful embedding would ideally show
participants clustered according to a label of interest. Crucially, these labels are never used in defining
the embedding; the clustering emerges as a facet of modeling the data well. (B) (Left) Principal
component analysis (PCA) defines affinity as the covariance between brain measures then projects the
samples onto the first k eigenvectors of this covariance matrix (here, k = 2 for visualization). (Middle)
Multi-dimensional scaling (MDS) defines similarity as correlation distance or Euclidean distance
and embeds the data to minimize the overall difference of pairwise distances between points in the
embedding space and in the affinity matrix. (Right) Manifold learning (here, with E-PHATE) uses
nonlinear computations (e.g., potential heat diffusion) to summarize the affinity between participants
and embeds the data with a nonlinear projection. (C) Prediction of mental health scores from each
data representation. All representations begin with the same brain measures (shown in (A) for the
first 16 participants). Ridge regression models were trained with cross-validation (see Figure 1B)
to take single brain measures (first panel; average across voxels), multiple measures (second panel;
voxel resolution as in (A)), or dimensionality reduced measures with PCA (third panel) or E-PHATE
(fourth panel) and learn a relationship with mental health scores. In held-out data, observed scores
were compared with the model’s predicted scores from each data representation. Manifold embeddings
provided the best representation for trained models to predict of mental health scores.
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mental health conditions. Yet, the clinical utility (i.e., ability to detect or predict vari-
ability related to symptoms or diagnoses) of such brain measures has remained limited
[7, 21, 36]. Prior work has focused on this gap being a result of low data quantity and
diversity (i.e., number of participants and their sociodemographic distribution), pre-
dictive modeling techniques, or the reliability of phenotypical measures [17, 23, 50].
Here, we instead focus on the methodological constraints inherent to preparing brain
measures for individual differences-style analyses.

We outlined two recent computational methods from cognitive neuroscience —
functional alignment and manifold learning — that can enhance the signal quality,
between-participant alignment, and behavioral relevance of brain measures collected
with fMRI in a data-driven fashion. Functional alignment addresses the problem of
mismatches between participants in what a brain signal encodes and where it is
encoded anatomically. This provides access to true sources of individual differences
in brain function, disentangled from anatomical variability or noise sources of less
interest [16, 42]. Manifold learning relaxes the assumption that the signal structure
of brain activity will be well-captured in linear dimensions. Embedding brain mea-
sures into lower, nonlinear dimensions allows the natural shape of the data to emerge
[48, 106, 118].

Initial applications of these methods have yielded refined representations with
substantially clearer associations between brain measures and behaviors among ado-
lescents [40, 48]. In the future, we anticipate that these more precise and informative
representations can be used to identify reliable brain-based biomarkers of different
symptoms and levels of mental health disorders.

Further, manifold learning is a method that can answer the call by psychologists to
confront the role of both biological and environmental variables in the onset and main-
tenance of mental health disorders [129–132, 136]. Manifold learning handles the noise
inherent in high-dimensional brain measures while incorporating the nonlinear effects
of exogenous risk factors on the brain, providing a holistic representation of the indi-
vidual variability related to mental health. Refinement of this method to incorporate
estimates of nonlinear change over time in both brain and environmental measures
is an exciting opportunity to capture the biosocial transactions that inform mental
health experiences across development [132].

We hope that further development and proliferation of these tools will shed
light on specific levels and combinations of factors associated with various mental
health experiences. The approaches covered in this Perspective and future approaches
will help researchers take full advantage of large neuroimaging datasets and real-
ize their intended clinical utility by offering refined representations of adolescent
neurobiology and environments. Clinical psychological science is a powerful tool for
identifying markers of, and intervening on, mental health disorders. However, psycho-
logical scientists need not act alone. Instead, progress will benefit from cooperation
and collaboration among different types of scientists, clinical and computational, to
derive accurate biomarkers of mental health disorder risk and potential targets for
intervention.
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Box 1: Implementation resources

We aim to make the approaches introduced in this Perspective easy to apply on a range
of neuroimaging data types using open-source software. Here, we provide a practical
“starter guide” for applying these methods. We also provide sample fMRI datasets
and simulated data to replicate analyses from prior papers. These tools are hosted
on Github (github.com/ericabusch/RepBiomrkr/) with instructions for running the
sample code on Google Colab or locally as Jupyter notebooks in python.

Functional alignment

The functional alignment notebook covers Hyperalignment [62] and Shared Response
Model (SRM) [89]. We include a hyperalignment implementation in the provided
hyperalignment.py python script, which we demonstrate converges with the imple-
mentation from the nltools package (github.com/cosanlab/nltools). We use the
implementation of SRM from the publicly available BrainIAK package (brainiak.org).
Hyperalignment and SRM are demonstrated for the following use cases:

1. Simulated data. We provide a package for simulating multivariate datasets with a
known correlational structure, both within and across datasets. This allows us to
mimic properties of fMRI datasets with differing levels of latent signal structure
and noise, and to test the effects of different alignment procedures on improving
between-dataset correspondence.

2. Movie-viewing data. We provide preprocessed fMRI data from an open-source
dataset (arks.princeton.edu/ark:/88435/dsp01nz8062179) in a visual region of
interest. We use intersubject correlation [84] as a metric to demonstrate how
functional alignment improves the correspondence of time-locked signals across
participants. We also demonstrate how functional alignment improves between-
subject classification, and how hyperalignment and SRM transformations and
shared functional templates can be cross-validated and applied to out-of-sample
data.

3. Resting-state functional connectivity. We provide code that accesses an open-source
resting-state fMRI dataset, selects a seed region of interest, and computes the func-
tional connectivity between the seed region and target regions across the brain
(nilearn.github.io/stable/modules/generated/nilearn.datasets.load nki.html). We
show how functionally aligning these signals improves the reliability of individual
differences in the data; that is, after functional alignment, functional connectomes
are more distinct across participants but more reliable within participant across
split halves of data.

Manifold learning

The manifold learning notebook covers many approaches to dimensionality reduction,
including PCA, LLE, Isomap, t-SNE, PHATE, and E-PHATE. We demonstrate these
algorithms with the following use cases:

1. Iris Plants Dataset. This is a simple, classic classification dataset available from
sklearn: scikit-learn.org/stable/datasets/toy dataset.html#iris-dataset. The data
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set contains three classes (each a type of iris plant) with 50 samples each, for a
total of 150 samples with four features each. One class is linearly separable from
the other two; the latter two are not linearly separable from each other and you
can visually see this in the embedding visualizations.

2. Handwritten Digits Dataset: This dataset is a bit more complicated, contain-
ing images of hand-written digits (10 classes where each class refers to a
digit). The data are 64 dimensional (8 x 8 pixel images, vectorized), so it is
higher dimensional and noisier than the Iris dataset. In the embedding spaces,
you can see how linear dimensionality reduction (PCA) does not separate
the classes, whereas two nonlinear methods do. This dataset is also accessible
via sklearn: scikit-learn.org/stable/datasets/toy dataset.html#optical-recognition-
of-handwritten-digits-dataset.

3. Micro-Mass Dataset: This dataset is the most like what we would see with
fMRI: high-dimensional biological data with far more features than samples. The
features are mass-spectrometry metrics for 10 classes of microorganisms, with
36 examples for each class, for a total of 360 samples with 1,301 features per
sample. Visualizations of this dataset show a clear instance where nonlinear
embedding methods outperform linear methods in distinguishing the classes. This
dataset is available freely on OpenML (openml.org/search?type=data&id=1514)
and accessible within the notebook using the fetch openml function from sklearn
(scikit-learn.org/stable/modules/generated/sklearn.datasets.fetch openml).

4. Simulated fMRI dataset: We created a simulated dataset of 100-dimensional brain
measures for 400 participants, a 6-dimensional simulated exogenous data matrix for
the 400 participants, and a single variable of interest to predict. These data were
meant to mimic a previously published paper [48], where the 100 dimensions are
voxels, the exogenous data matrix is X, and the variable being predicted is Y. We
show how embedding these data with the different approaches reflects individual
differences in participant scores. We also provide sample code for running cross-
validated prediction analyses on embedded data.
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