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The functional connectome supports information transmission through the brain at various spatial scales, from exchange between
broad cortical regions to finer-scale, vertex-wise connections that underlie specific information processing mechanisms. In adults,
while both the coarse- and fine-scale functional connectomes predict cognition, the fine scale can predict up to twice the variance as
the coarse-scale functional connectome. Yet, past brain-wide association studies, particularly using large developmental samples,
focus on the coarse connectome to understand the neural underpinnings of individual differences in cognition. Using a large cohort
of children (age 9–10 years; n = 1,115 individuals; both sexes; 50% female, including 170 monozygotic and 219 dizygotic twin pairs
and 337 unrelated individuals), we examine the reliability, heritability, and behavioral relevance of resting-state functional connec-
tivity computed at different spatial scales. We use connectivity hyperalignment to improve access to reliable fine-scale (vertex-wise)
connectivity information and compare the fine-scale connectome with the traditional parcel-wise (coarse scale) functional connec-
tomes. Though individual differences in the fine-scale connectome are more reliable than those in the coarse-scale, they are less
heritable. Further, the alignment and scale of connectomes influence their ability to predict behavior, whereby some cognitive traits
are equally well predicted by both connectome scales, but other, less heritable cognitive traits are better predicted by the fine-scale
connectome. Together, our findings suggest there are dissociable individual differences in information processing represented at
different scales of the functional connectome which, in turn, have distinct implications for heritability and cognition.
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Significance Statement

Years of human magnetic resonance imaging (MRI) research demonstrate that individual variability in resting-state functional
connectivity relates to genetics and cognition. However, the various spatial scales where individual differences in connectivity
could occur have yet to be considered in childhood brain–behavior association studies. Here, we use novel machine learning
approaches to examine the reliability, heritability, and behavioral relevance of different spatial scales of the resting-state func-
tional connectome during childhood.We show that broad features of the connectome are strongly related to heritability, whereas
fine details are more reliable and strongly associated with neurocognitive performance. These data indicate that reliable, her-
itable, and behaviorally relevant individual differences exist at dissociable scales of the functional connectome.
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Introduction
The development of the functional connectome is an interplay of
genetics (Glahn et al., 2010; Jansen et al., 2015; Miranda-
Dominguez et al., 2018) and experience (Blokland et al., 2012;
Yang et al., 2016). Functional connections at various spatial
scales account for related yet distinct information processing
(Haak et al., 2018; Haxby et al., 2020). While variation in func-
tional connectivity (FC) predicts individual differences in mem-
ory (Lin et al., 2021), attention (Rosenberg et al., 2016), and fluid
intelligence (Finn et al., 2015), among other traits (Dosenbach et
al., 2010; Cui et al., 2020; Sripada et al., 2020; Feilong et al., 2021;
Chen et al., 2022), how genetics and experience guide the devel-
opment of different scales of FC remains unclear. Here, we esti-
mate the heritability, reliability, and predictivity of resting-state
FC (RSFC) at different levels of granularity in children. Our
data suggest that the spatial scale of the functional connectome
dissociates effects of experience-based RSFC features from heri-
table influences.

Past studies revealed genetic control over brain morphology
(Thompson et al., 2001; Peper et al., 2009; Blokland et al.,
2012; Brouwer et al., 2014; Elliott et al., 2018) and RSFC
(Glahn et al., 2010; Fu et al., 2015; Colclough et al., 2017; Ge et
al., 2017; Miranda-Dominguez et al., 2018; Anderson et al.,
2021; Barber et al., 2021). Genetic influences on brain function
are associated with cognition, increase with age, and interact
with the environment to sculpt idiosyncratic functional connec-
tomes (Lenroot et al., 2009; Brouwer et al., 2014; Schmitt et al.,
2014; Jansen et al., 2015). The development of brain–behavior
associations is often interpreted as a passive maturation, where
genetics determine brain development which determines beha-
vior. However, more recent frameworks suggest an interactive
specialization of the developing brain that involves bidirectional
interactions between genes, brain regions and networks, and psy-
chological function across age and experience (Johnson, 2011).
The interactions guiding and shaping functional brain–behavior
associations in development likely vary at different spatial scales
of FC.

Whole-brain RSFC is commonly calculated by parcellating
the cortex and averaging over vertices within a parcel and
then correlating the timeseries between pairs of parcels.
Parcellations mitigate high-dimensionality, measurement insta-
bilities, and idiosyncratic functional topographies by coarsely
aligning fMRI signals and have been used in prior developmental
brain–behavior association studies (Sripada et al., 2020; Chen et
al., 2022; Marek et al., 2022). Parcellations assume the same
regional boundaries exist across brains, regardless of individual
or developmental differences (Bandettini et al., 2022).
Individual-defined parcellations better capture individualized
functional topography (Glasser et al., 2016; Kong et al., 2019,
2021, 2023), yet cover large surface areas and collapse over local,
fine-scale information processing. A useful alternative, func-
tional alignment maximizes inter-subject correspondence while
resolving fine-scale anatomical variation. Meaningful individual
differences in fine-scale signals are most apparent after resolving
functional topographies with methods like hyperalignment
(Haxby et al., 2011, 2020). Instead of modeling functional topog-
raphies in anatomical dimensions, hyperalignment models func-
tional information as high-dimensional pattern vectors and
optimally aligns them to a common information space. The
dimensions of this space represent shared functional patterns,
retaining granularity while resolving fine-scale mismatches.
Using hyperalignment to model the developing fine-scale

functional connectome yields two main advantages. First,
hyperalignment improves between-subject correspondence
(Guntupalli et al., 2016, 2018; Busch et al., 2021) and highlights
reliable, behaviorally relevant idiosyncrasies (Feilong et al.,
2018, 2021). Second, hyperalignment can disentangle anatomi-
cal from functional topographies to reveal how fine-scale RSFC
relates to genetics and cognition, independent of anatomical
idiosyncrasies.

To date, genetic contributions to fine-scale FC remain to be
quantified, as well as their reliability and relation to developing
cognition. Here, we ask: Does accessing the fine-scale connec-
tome tighten the link between FC, cognition, and genetics shown
in coarse-scale connectivity? Or is there a dissociation of genetic
control over these two scales? We use connectivity hyperalign-
ment (CHA; Guntupalli et al., 2018) to access and dissociate
coarse- and fine-scale RSFC in 1,115 children from the ABCD
Study. We leverage machine learning approaches to understand
how connectome granularity relates to reliability, heritability,
and cognition in children.

Materials and Methods
The ABCD Study. We considered a subset of data from the 11,875

children included in the ABCD Study data release 2.0.1 (Casey et al.,
2018). The ABCD Study is a longitudinal study with 21 sites around
the United States and aims to characterize cognitive and neural develop-
ment with measures of neurocognition, physical and mental health,
social and emotional function, and culture and environment. The
ABCD Study obtained centralized Institutional Review Board (IRB)
approval from the University of California, San Diego, and each site
obtained local IRB approval. Ethical regulations were followed during
data collection and analysis. Parents or caregivers provided written
informed consent, and children gave written assent. Four leading
twin research centers at the University of Minnesota, Virginia
Commonwealth University, University of Colorado-Boulder, and
Washington University in St. Louis comprise the ABCD Twin Hub.
Each site enrolled ∼200 same-sex monozygotic (MZ) or dizygotic
(DZ) twin pairs as well as singletons (Iacono et al., 2017). Their inclu-
sion in the ABCD Study affords unique access to the causal interrelation
between genetics, environment, brain function, and cognition during
development (Blokland et al., 2012; Jansen et al., 2015; Iacono et al.,
2017).

The present study used imaging and behavioral data from a subset
of n = 1,115 subjects from the original 11,875 subjects. Included sub-
jects were enrolled in the University of Minnesota, Washington
University in St. Louis, and University of Colorado-Boulder sites,
which all use 3 T Siemens MRI scanners. We excluded one twin site
as it uses a different platform with different scanner parameters.
Despite evidence of decent cross-platform reliability for structural
and functional imaging (Duchesne et al., 2019; Schwartz et al., 2019;
Keenan et al., 2021), we chose to harmonize our analyses on data col-
lected from a single platform type (Casey et al., 2018). ABCD
Study-wide exclusion criteria include a diagnosis of schizophrenia,
moderate to severe autism spectrum disorder, intellectual disabilities,
major and persistent neurological disorders, multiple sclerosis, sickle
cell disease, seizure disorders (like Lennox–Gastaut syndrome, Dravet
syndrome, and Landau–Kleffner syndrome), or substance abuse disor-
ders at time of recruitment. Subjects with mild autism spectrum diag-
nosis, history of epilepsy, traumatic brain injury, and MR incidental
findings were excluded from the present analysis.

Resting-state fMRI data collection. Structural and functional data
from the three included sites were acquired using Siemens Prisma 3 T
scanners with a 32-channel head coil. Detailed acquisition parameters
are previously described in the literature (Casey et al., 2018; Hagler et
al., 2019). Scan sessions consisted of a high-resolution (1 mm3)
T1-weighted image, diffusion-weighted images, T2-weighted spin-echo
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images (1 mm3), resting-state fMRI (rs-fMRI), and task-based fMRI. We
utilized rs-fMRI solely in this study. rs-fMRI data were collected with an
echo-planar imaging sequence with 2.4 mm voxels, TR = 800 ms, TE =
30 ms, and multiband slice acceleration factor = 6. Participants com-
pleted up to four runs of 5 min resting-state scans. Framewise integrated
real-time MRI monitoring (FIRMM; Dosenbach et al., 2017) was used to
monitor subject head motion during data collection, and scan operators
may have stopped resting-state data collection after three runs if
12.5 min of low-motion resting-state data had been collected. Thus, var-
iable numbers of rs-fMRI runs were collected per subject.

Additional exclusions were made based on poor structural scan qual-
ity (determined with curated data release 2.0.1 sheet freesqc01.txt) or low-
quality/high-motion resting-state fMRI (determined as a score of zero for
fsqc_qc or greater than one for fsqc_qu_motion, fsqc_qu_pialover,
fsqc_qu_wmunder, or fsqc_qu_inhomogeneity), as reported in prior stud-
ies (Rosenberg et al., 2020). Participants with fewer than 900 brain vol-
umes of rs-fMRI data passing these measures for FreeSurfer
reconstruction were also excluded. ABCD Data Release 2.0.1 used
FreeSurfer version 5.3 for quality control checks (Fischl, 2012). After
filtering, we used resting-state fMRI and behavioral data from 1,115
unique subjects (552 male), including 170 pairs of monozygotic (MZ)
twins, 219 pairs of dizygotic (DZ) twins, and 337 singletons (Fig. 1).
All twin pairs were same-sex, and all subjects were 9–10 years old.
Included singletons were also balanced for ancestry, ethnicity, sex, and
pubertal development with twins (Table 1).

Preprocessing. rs-fMRI data were downloaded via the DCAN Labs
ABCD-BIDS Community Collection (Feczko et al., 2021; NDA
Collection 3165). This is a regularly updated dataset of ABCD Brain
Imaging Data Structure (BIDS; Gorgolewski et al., 2016) version 1.2.0
pipeline inputs and derivatives, using source data from the ABCD
Study participants baseline year 1 arm 1 DICOM imaging data that
passed initial acquisition quality control from the ABCD Data Analysis
and Informatics Center (DAIC; Hagler et al., 2019) and retrieved from
the NIMH Data Archive (NDA) share of ABCD fast-track data (NDA
Collection 2573). DICOMs were converted to BIDS input data using
Dcm2Bids (Boré et al., 2023), which reorganizes NiftyImages produced
with dcm2niix (Li et al., 2016). Raw images were preprocessed using
the DCAN Labs ABCD-BIDS MRI processing pipeline (Sturgeon et al.,
2021; for details, see github.com/DCAN-Labs/abcd-hcp-pipeline; osf.
io/89pyd), which is based on the Human Connectome Project (HCP)
Minimal Preprocessing Pipeline (Glasser et al., 2013) with additional
modifications specifically for the ABCD Study dataset and summarized
below.

The first stage of the pipeline, PreFreeSurfer, performed brain extrac-
tion, alignment, andN4 bias field correction on the T1w and T2w images.
The second stage, FreeSurfer (Dale et al., 1999; Fischl, 2012), segmented
the resulting T1w images and identified tissue boundaries to register to a
FreeSurfer template and produce brain masks. The third stage,
PostFreeSurfer, used the brain masks to register T1w images to MNI

space using ANTs symmetric image normalization method (Avants et
al., 2008). Surfaces were then transformed to standard space using sphe-
rical registration and converted to CIFTI format along with the standard-
ized brain volumes. Multimodal surface registration was performed with
MSM-sulc, the state-of-the-art surface-based alignment procedure
(Robinson et al., 2014). By using MSM-sulc, we expect regional bound-
aries to be well-aligned across brains, thus minimizing the potential
influence of anatomical differences on differences in FC (Coalson et
al., 2018). The fMRIVolume stage performed functional image distortion
correction using reverse phase-encoded spin-echo images to correct for
local field inhomogeneities. Eta squared values were computed for each
image to a participant-level average of all field maps, and the pair with
the highest value (i.e., most representative of the average) was selected

Full ABCD Cohort
(N = 11875)

Enrolled in Twin
Site w. Siemens 
(N = 1829)

Passed FreeSurfer 
QC (N = 1807)

No MR incidental
findings 
(N = 1731)

No exclusion 
conditions
(N = 1682)

Excluded: Enrolled at non-twin site or site 
with GE scanner
(N = 10046) [abcd_lt01.txt]

Excluded: Did not pass MR incidental 
screen (N = 76) [abcd_mrfindings01.txt]

Excluded: Did not pass FreeSurfer QC 
(N = 22) [freesqc01.txt]

Excluded: Did not pass scrn_psych_excl, 
scrn_eps, scrn_asd, scrn_schiz, scrn_asd
(N = 49) [abcd_screen01.txt]

Excluded: Missing rs-fMRI data OR 
fewer than 900 TRs of QC-
passed rs-fMRI (N = 567) 

Final participants
included
(N = 1115)

Participant inclusion pipeline

Figure 1. Flowchart illustrating participant inclusion/exclusion criteria.

Table 1. Participant information and cohort breakdown

Total included Monozygotic pairs Dizygotic pairs Unrelated test Unrelated train

Total 1,115 170 219 526 200
Site 20 387 75 86 184 60
Site 21 371 34 81 166 90
Site 22 357 75 68 176 50
Age (mos, interview_age) 121.6 122.5 122.0 121.6 120.7
% female (gender) 50 52 50 50 50
% Ancestry: African (AFR) 12.7 9.2 11.8 11.3 20.4
% Ancestry: European (EUR) 80.5 82.5 82.6 81.4 73.3
% Ancestry: American (AMR) 4.9 6.7 4.0 5.2 3.8
% Ancestry: East Asian (EAS) 2.0 1.6 1.6 2.1 2.5
Ethnicity (race_ethnicity) 1.667 1.658 1.63 1.73 1.58

Data were acquired from the publicly available ABCD data release 2.0.1. Participants were divided into cohorts to balance unrelated participants with the demographics of the twin participants, while respecting the demographic diversity
of individual ABCD sites. Percent ancestry values reflect the percentage of a participant's genetic makeup attributed to a given ancestry, then averaged across participants. Ethnicity values represent a 4-level race/ethnicity model, where
participants self-identified as White, Black, Hispanic, Asian, or other, and these coded values were averaged across participants.
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to avoid potential motion confounds. Finally, the fMRISurface stage per-
formed 2 mm full-width at half-maximal spatial smoothing.

DCAN BOLD Processing (DCAN-Labs, 2022) was used to perform
standard data processing. First, fMRI data were demeaned and detrended
with respect to time. Covariates of no interest were regressed from the
data, including mean white matter, cerebrospinal fluid, overall global sig-
nal, mean grayordinate timeseries, and six-movement variables (X, Y, Z
translation and roll, pitch, yaw rotation). Global signal regression has
been shown to strengthen associations between RSFC and behavioral
variables (Li et al., 2019). Timeseries data were then bandpass filtered
between 0.008 and 0.09 Hz using a second-order Butterworth filter.
Data were then filtered for respiratory motion for the frequencies
(18.582–25.726 breaths per minute) of the respiratory signal, which
has been shown to improve the stability of framewise displacement
(FD) estimates (Fair et al., 2020). “Bad” frames, where motion exceeds
FD of 0.3 mm, were removed when demeaning and detrending such
that denoising betas were only calculated for “good” frames. For the
bandpass filtering, interpolation was used to replace those frames, so
that preprocessing of the timeseries only includes “good” data but avoids
aliasing due to missing timepoints. Finally, the filtered timeseries were
normalized within run and concatenated across runs. The derivatives
used in this analysis are *ses-baselineYear1Arm1_task-rest_bold_
desc-filtered_timeseries.dtseries.nii.

Connectivity hyperalignment. We used CHA (Guntupalli et al., 2018)
to functionally align fine-scale connectivity information across subjects.

Given the small quantity (1,480 ± 142 brain volumes; mean ± SD) of
resting-state fMRI data available per subject, we chose to train the hyper-
alignment model common space using a cohort of 200 subjects who were
then excluded from further analysis. These 200 training subjects were
singletons enrolled at one of the three included sites and were matched
with twin subjects on gender, pubertal development, age, and race/eth-
nicity (Table 1 and Fig. 2). The remaining 915 subjects (including 137
singletons and the 389 twin pairs) were used for subsequent analyses
(“test” subjects). Crucially, the hyperalignment model space never saw
data from any test subjects during training.

CHA aligns fine-scale connectivity patterns in a cortical field to the
same targets elsewhere in the brain. While computing connectivity
profiles to be hyperaligned, it is often desirable to use individualized con-
nectivity targets to account for topographic idiosyncrasies in target
regions. Individualized connectivity targets can be generated with indi-
vidualized parcellations (Glasser et al., 2016; Langen et al., 2018; Kong
et al., 2019, 2021, 2023; Anderson et al., 2021) or by iterating the hyper-
alignment algorithm (Busch et al., 2021; Jiahui et al., 2023). In our imple-
mentation for this study, we used parcels from the Glasser cortical
parcellation (Glasser et al., 2016) as the cortical fields and targets to be
hyperaligned. The Glasser parcellation provides whole-cortex coverage
and has been used in prior studies evaluating RSFC and behavioral pre-
dictions (Dubois et al., 2018a,b; Feilong et al., 2021). We co-registered
subjects’ brains using surface-based alignment with the MSM algorithm
(Robinson et al., 2014) which aligns the region boundaries well (Coalson
et al., 2018), but future work may want to use individualized connectivity

Figure 2. Balancing of participant demographics and genetic ancestry across hyperalignment training. The three sites differed in mean demographic attributes, including a four-level race
model, parental education level, parental income, and Hispanic identity (A) and in mean genetic ancestry (B). To respect this diversity and sample the entire range of demographics in the
normative hyperalignment model, we selected subjects to train the CHA model to reflect sample demographics along these four dimensions. Shown here are the distributions of participants’
scores, scaled for visualization, for the participants allocated for CHA train or test cohorts. Violins show training cohort on the left and testing cohort on the right, with quartiles of each distribution
shown with a dashed line. Significance of differences along each dimension between CHA cohorts were tested with a two-tailed independent sample t test and * denotes p < 0.05 after
Bonferroni’s correction.
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targets instead of parcels, particularly if using vertex-level connectivity
targets (Feilong et al., 2021).

We trained a hyperalignment model for each parcel using the 200
training subjects’ “fine scale” connectomes, which capture the connectiv-
ity between connectivity seeds (each vertex in the cortical field defined by
the parcellation) with connectivity targets across the rest of the brain (the
average timeseries of each other parcel) (Fig. 3). For example, for a parcel
with 430 vertices, its fine-scale connectivity matrix would be a matrix of
dimensions 430 by 359 correlation coefficients, where 430 corresponds
to the number of vertices within the parcel and 359 corresponds with
each other region in the parcellation. The same parcel's coarse-scale
connectivity profile would be a vector of 359 correlation coefficients
(Fig. 3B). During training of the hyperalignment space, the 359 pattern
vectors representing the connectivity targets of one brain are hypera-
ligned to another brain's vectors for the same field and targets with a
high-dimensional transformation that minimizes the distances
between vectors to the same targets. We calculate these transformations
using the Procrustes transformation to derive the optimal high-
dimensional improper rotation that minimizes these distances, pre-
serving their geometry. A template connectivity information space
for a cortical field is calculated for a normative sample of brains by
first hyperaligning brain 2 to brain 1, then hyperaligning brain 3 to

the mean patterns for hyperaligned brains 1 and 2, and so forth. In a
second iteration, each brain is hyperaligned to the mean connectivity
pattern vectors from the first iteration. The mean pattern vectors for
each cortical field after the second iteration serves as the template for
hyperaligning other brains to this high-dimensional model connectiv-
ity space (“Common model space for parcel p” in Fig. 3A). A new
individual-specific transformation is calculated for each new brain (R
for each test subject in Fig. 3A). Each vertex in this model template
serves as a model dimension, and the individual-specific transforma-
tion resamples the vertices in a new participant's brain into these model
dimensions as weighted averages.

For each region, we trained a separate high-dimensional common
model space D based on the fine-scale functional connectomes of the
200 training subjects. The dimensionality of the model space is equal
to the number of vertices, but the model dimensions correspond to
shared FC properties across individuals instead of anatomical locations
(Haxby et al., 2020). After the model dimensions were learned, we dis-
carded training subjects’ data from downstream analyses. We derived
invertible transformation matrices R for the testing subjects’ connec-
tomes into the model space, which map vertex timeseries from the ana-
tomically defined, vertex dimensions into the functionally defined, model
dimensions. The derivation of R for testing subjects was determined

Figure 3. A, CHA training procedure. For each parcel in the Glasser parcellation (here, region 329 with 430 cortical vertices), connectivity matrices are computed as the strength of connectivity
(Pearson's correlation) between the activity timeseries of vertices within the parcel (seeds; u) and the average activation across vertices in all other parcels (targets; v). The connectivity matrices
for 200 held-out, unrelated subjects are used to train the hyperalignment common model space for a given parcel. The model space is of dimensions D = [d1…dn] which are weighted com-
binations of U = [u1…un], the dimensions of each subject's connectivity matrices in their native anatomical space. D represents the space where connectivity targets are best aligned across
training subjects. Then, connectomes for the 915 test subjects are projected into D via subject-specific transformation matrices R, which detail a mapping from given subject i's anatomical space Ui
into D. This procedure is repeated to derive R for each test subject and parcel. Then, the regional activation pattern for each parcel in anatomical space is mapped via R into the region's common
space to compute the hyperaligned timeseries for each subject, which is then used to recompute connectivity matrices between hyperaligned seeds v and model dimensions d. B, Connectome
granularity. Fine-scale connectomes are multivariate patterns of the connectivity weights between the timeseries responses of all individual vertices in a given parcel and the average timeseries
response of each other parcel in the brain. Coarse-scale connectomes are vectors (univariate), representing the connectivity weight between the average timeseries response of a given parcel,
averaged across all of its vertices, and those of each other parcel in the brain.
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based on the analysis we performed to ensure that R was not overfit and
outlined in the Materials and Methods for each analysis.

Functional connectomes. After aligning data from test subjects into
the CHA common space, we re-computed coarse and fine-scale FC
matrices, where the fine-scale patterns capture model dimensions instead
of vertices for each parcel. We defined fine-scale FC profiles as in the
input data for the CHA training procedure: the correlation between
the timeseries of all 59,412 model dimensions with the average timeseries
of each parcel. This results in a matrix of 59,412 by 360 connectivity
weights per subject, and we then sort the 59,412 dimensions into their
parcels to get a parcel's fine-scale connectome after CHA (Fig. 3B).

We defined coarse-scale FC profiles as the correlation between the
average timeseries for all pairs of parcels, resulting in a matrix of 360
by 360 correlation coefficients per subject (Fig. 3B). Before hyperalign-
ment, this averaging is performed over the vertices within a parcel.
After hyperalignment, this averaging is performed over the model
dimensions within a parcel. The fine-scale and coarse-scale connectomes
were computed on data pre- and post-hyperalignment [subsequently
referred to as anatomical alignment (AA) and CHA, respectively] for
each subject to evaluate the effect of functional alignment and connec-
tome granularity on heritability, reliability, and behavioral prediction.

Individual difference matrix reliability. Developmental neuroimag-
ing data is associated with high levels of noise and low reliability
(Power et al., 2012; Satterthwaite et al., 2012; Birn et al., 2013; Fair et
al., 2020; Kennedy et al., 2022), as are smaller (vertex-resolution) connec-
tivity seeds (Haak et al., 2018). Variability in RSFC can reflect idiosyncra-
sies driven by cortical communication patterns indicative of
neurocognitive variability, but it can also reflect artifacts due to data
acquisition noise, movement (Power et al., 2012; Van Dijk et al., 2012),
and functional–anatomical mismatch. In adult populations, brain parcel-
lations (e.g., Glasser parcellation; Glasser et al., 2016), average adjacent
areas of cortex to improve signal-to-noise and reduce the dimensionality
of the data, and adult-defined parcellations are frequently applied to
development datasets (Chen et al., 2022; Marek et al., 2022). This
approach assumes functional–anatomical correspondence will improve
at the group level and that functional boundaries are constant across
development and comes at the cost of lower granularity.

Another approach to group alignment, hyperalignment has been
shown to improve the reliability of fine-scale information and individual
differences by correcting more thoroughly for anatomical variability
through a space that aligns patterns of FC in high dimensions (Dubois
and Adolphs, 2016; Haxby et al., 2020). To our knowledge, hyperalign-
ment or other functional alignment approaches have yet to be applied
to developmental fMRI data, and we hypothesized it could yield access
to meaningful individual differences in RSFC patterns. We measured
the effect of CHA on reliability of individual differences using an individ-
ual difference matrix (IDM) reliability analysis.

We calculated the reliability of individual differences in functional
connectomes as follows. For the 526 unrelated test subjects, we computed
fine-scale functional connectomes by splitting each subject's RS time-
series in half to create two “pseudo-sessions” (mean ± SD across subjects
= 742 ± 71 TRs), resulting in two fine-scale functional connectomes for
each subject. These initial matrices served as the fine-scale AA functional
connectomes, and averaging over the vertex dimensions yielded two
coarse-scale AA connectomes.

To perform CHA on a given test subject's data, we took their two
pseudo-session fine-scale AA connectomes and derived two transforma-
tion matrices R independently for each connectome. These R matrices
were then applied to their respective pseudo-session timeseries data to
rotate the subject's resting-state timeseries into the common dimensions.
This was repeated for all parcels, keeping each pseudo-session entirely
independent, before recomputing fine-scale and coarse-scale functional
connectomes for each pseudo-session. After this procedure, each subject
has eight different connectomes per parcel: AA fine, AA coarse, CHA
fine, and CHA coarse, which were independently processed for each
half of their timeseries data.

Then, for each connectome and parcel, we vectorized the functional
connectomes and computed IDMs for each pseudo-session. IDMs are
subject-by-subject pairwise dissimilarity matrices, where each value in
the matrix is the correlation distance (1—Pearson's r) between two sub-
jects’ regional connectivity profiles. After computing IDMs, we took the
upper triangle of the IDM and correlated them (Pearson's r) across split
halves (but within connectome type) to measure the reliability of the
individual differences in the functional connectomes across the splits
(Feilong et al., 2018). This metric reflects the reliability of the idiosyncra-
sies in a subject's functional connectomes, where subjects are more sim-
ilar to themselves across split halves than they are to any other subject,
rather than a standard reliability analysis. We used a Mantel test
(Mantel, 1967) implemented in Python (https://github.com/jwcarr/
mantel) to assess statistical significance of IDM reliability using 10,000
permutations. This analysis results in four spatial maps of IDM reliability
scores, with one score for each parcel within the AA fine, AA coarse,
CHA fine, and CHA coarse connectome types.

Multidimensional heritability analysis. In this analysis, we assessed
the heritability of functional connectomes using RS data from 389 twin
pairs, including 170 MZ pairs and 219 DZ pairs. RSFC heritability for
each parcel was estimated for the AA fine, AA coarse, CHA fine, and
CHA coarse-scale connectomes, as in the prior reliability analysis, to
assess the degree of genetic control over the information represented
by each connectome type. CHA was performed using the same model
space as the reliability analysis. The 778 subjects’ data included in the
heritability analysis were hyperaligned using their entire timeseries,
rather than the pseudo-sessions used to assess reliability.

Functional connectomes at vertex granularity are an inherently high-
dimensional phenotype; when dimensionality of the phenotype is col-
lapsed, the reliability of individual differences decreases (Feilong et al.,
2018). To offer greater statistical power in analyzing the heritability of
this high-dimensional phenotype, we used a multidimensional estimate
of heritability (Ge et al., 2017; Anderson et al., 2021) to summarize the
degree to which FC profiles for each parcel are under genetic control.
This model takes a phenotypic similarity matrix, which is computed
by vectorizing the connectomes for each parcel and computing the pair-
wise correlation of connectomes across all 778 subjects. It also takes a
genetic kinship matrix, which we estimated with SOLAR Kinship2
(Almasy and Blangero, 1998), to estimate h2-multi, or the score indicat-
ing heritable control over RSFC. This was computed for each parcel at
each scale and alignment.

Neurocognition PC prediction analysis. Prior work has shown that,
after hyperalignment, fine-scale connectomes better predict individual
differences in cognitive ability than coarse-scale connectomes in adults
(Feilong et al., 2021). We asked whether this fine-scale information
also reflects information more predictive of cognition in children, where
the fine-scale connectome is likely more obscured by collection noise yet
sculpted with experience. Further, we asked whether there is a relation-
ship between the type of cognition being predicted and the connectome
scales that best capture variation in that phenotype.

Cognitive abilities are among the most heritable dimensions of
human behavior (Plomin and Deary, 2015). Heritability (h2) of cognitive
abilities varies by domain and increases with age, with higher estimates
for general cognitive ability [h2 = 0.54–0.85 at 10–12 years (Bouchard,
2004) and h2 = 0.60–0.73 at 8–21 years (Mollon et al., 2021)] than for
specific cognitive abilities like learning/memory [h2 = 0.18–0.55 at 8–
21 years (Plomin and Spinath, 2004) and h2 = 0.39 at 18–67 years
(Fletcher et al., 2014)], which tend to be more sensitive to experiential
factors. Thus, we looked at whether the variation in reported heritability
between general cognitive ability and learning/memory relates to the
functional significance of our heritability and reliability findings.

We operationalized general cognitive ability and learning/memory
using the neurocognition principal components (neurocog PCs) iden-
tified by Thompson et al. (2019) and made available through the
ABCD Study data repository. Thompson et al. (2019) identified compos-
ite principal components of neurocognition using Bayesian probabilistic
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principal components analysis (BPPCA) over the NIH Cognitive
Toolbox tasks administered in the ABCD Study, which measure episodic
memory, executive function, attention, working memory, processing
speed, and language abilities. The BPPCA yielded a three-component
solution, roughly corresponding to general cognitive ability, executive
function, and learning/memory. Since the NIH Toolbox tasks that
canonically measure executive function did not load onto the executive
function component in this solution, we excluded this component
from our analyses, instead focusing on general cognitive ability and
learning/memory. Tasks loading onto the general cognitive ability com-
ponent include Toolbox Picture Vocabulary, Toolbox Oral Reading test,
List Sort Working Memory task, and Little Man task. Tasks loading onto
the learning/memory component include the Toolbox Picture Sequence
Memory task, the RAVLT total number correct, and the List Sort
Working Memory task (Thompson et al., 2019). Heritability of compos-
ite scores was estimated with Falconer's formula (Falconer, 1996) and
with SOLAR Polygenic (Almasy and Blangero, 1998) testing sex, age,
ethnicity, and site as covariates.

We predicted individual subjects’ scores onto the neurocognition
principal components based on individual differences in RSFC from
our cohort of 526 unrelated subjects using a principal component ridge
regression adapted from our previous study (Feilong et al., 2021). For
each parcel, scale, and alignment, we computed subject-wise IDMs using
FC over the entire resting-state timeseries, which captures the covariance
structure among subjects’ functional connectomes. Next, we ran a prin-
cipal component analysis (PCA) over the IDM to decompose the IDM
into main orthogonal dimensions along which individuals’ connectivity
profiles differ from one another. We then trained a ridge regression
model to predict neurocognition PC loadings from the decomposed
IDM. Models were trained and tested using nested cross-validation,
where the inner fold optimized regression model parameters (including
the number of IDM PCs retained and α) across three subfolds and the
outer fold scored the selected model on a held-out subject. Candidate
regression model parameters were distributed evenly on a logarithmic
scale, from 10 to 320 PCs and no PCs (no dimensionality reduction),
and α chosen from 121 values between 10−20 and 1040. Models were eval-
uated using the cross-validated coefficient of determination R2, which
shows the variance in neurocognition PC loadings accounted for by
the prediction models. To assess statistical significance of model perfor-
mance against chance, we used permutation testing with 1,000 iterations
of shuffling the neurocognitive scores, performed at the parcel level. To
compare prediction scores across connectome types, we generated a null
distribution of the difference in scores between pairs of connectome
types by randomly permuting the connectome label 1,000 times and
recomputing the mean difference and then calculating a two-tailed p
value of the true difference relative to the null distribution.
Between-connectome p values were corrected for multiple comparisons
using Bonferroni’s method.

Prior work has indicated that in-scanner head movement is corre-
lated with neurocognition scores. We implemented strict participant
exclusion based on data quality control but still found amild relationship
between mean framewise displacement (FD) and neurocognitive scores.
To control for possible effects of movement on our prediction, we
repeated the neurocognition PC prediction analysis by including FD as
a covariate when comparing observed and predicted scores.

Statistical tests. Within each analysis, we estimated the statistical
significance of the score calculated for each parcel and connectome
type. For the reliability analysis, we calculated the statistical significance
of the correlation between IDMs using a Mantel test (Mantel, 1967) with
10,000 permutations and implemented in Python (https://github.com/
jwcarr/mantel). For the heritability analysis, we calculated statistical
significance of h2-multi scores using subject-based permutations, where
the kinship matrix was randomly shuffled 1,000 times (Anderson et al.,
2021). For the prediction analysis, we calculated statistical significance
of R2 values by permuting the neurocognitive scores 1,000 times. All p
values were then false discovery rate adjusted and surface plots are all
thresholded at q < 0.05.

In each of the reliability, heritability, and prediction analyses, we
compute p values to compare the scores at each parcel across connectome
type. We did this by generating a null distribution of the difference in
scores between pairs of connectome types by randomly permuting the
connectome label 1,000 times and recomputing the mean difference of
the scores. We then compared the true difference between scores relative
to the null distribution and computed a two-tailed p value. This was
repeated for each pair of connectome types, and p values, as reported,
were corrected for the six multiple comparisons using Bonferroni’s
method.

Data availability. The ABCD Study is longitudinal, so the data
repository changes over time and can be found here: nda.nih.gov/abcd.
In the current study, we used the ABCD data release 2.0.1, downloaded
via ABCD-BIDS Community Collection (Feczko et al., 2021) NDA
Collection 3165.

Code availability. ABCD Study data preprocessing code can be
found here: github.com/DCAN-Labs/abcd-hcp-pipeline. ABCD Study
data processing code can be found here: github.com/DCAN-Labs/
dcan_bold_processing. Code for running the multiscale heritability anal-
ysis can be found here: github.com/kevmanderson/h2_multi. Code for
running the nested PCA ridge regression was based off the following:
github.com/feilong/IDM_pred. Hyperalignment was performed with
PyMVPA: www.pymvpa.org. All analysis code specific to this study is
available here: https://github.com/ericabusch/ABCD_hyperalignment_
JNeurosci.

Results
Establishing the reliability of individual differences
Here, we analyzed RSFC in a large cohort of 1,115 children, aged
9 to 10, using two methods of group alignment. The first uses a
standard approach to align data in a common space based on
anatomical location (AA), while the second approach uses
CHA (Guntupalli et al., 2018) to learn a common information
space based on fine-scale patterns of FC within cortical fields
(Glasser parcels) via an adapted Generalized Procrustes
Analysis (see Materials and Methods for details). CHA allows
for local remixing of vertex-wise FC profiles (vertices’ vectors
of connectivity to targets) within an anatomically constrained
region (Haxby et al., 2011), thereby projecting idiosyncratic
patterns of vertex connectivities to the same target into a
common connectome space (Haxby et al., 2020). In contrast
with coarse alignment, which averages timeseries responses
across a region's vertices to calculate a single connectivity
strength with each target region, CHA retains the
vertex-by-vertex variation on connectivity strength to each tar-
get region (Fig. 3B). Within this common, fine-scale space, indi-
vidual differences in FC become more reliable (Feilong et al.,
2018) and more predictive of cognitive traits (Feilong et al.,
2021) in adults.

To address the question of individual differences in fine-scale
FC among children, we use CHA to build a model of shared brain
function. This negates concerns about differences in cortical
development or anatomy that may confound modeling of FC
patterns and accounts for the noise and other undesirable idio-
syncrasies endemic in developmental neuroimaging. To do
this, we used CHA to build a template common connectome
for each parcel on a training sample of 200 unrelated children,
counterbalanced across included sites and representative of
demographics within site (Table 1; Fig. 2). We then hyperaligned
each of the 915 remaining connectomes to this common connec-
tome, using either entire or split-half rs-fMRI timeseries
(depending upon the downstream analysis). Note that this
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common information space is based on children of the same age
and demographics as the test sample and that the test sample's
data played no role in deriving the common space. We addressed
the relative effects of hyperalignment versus simply higher-
dimensional measurements by averaging the functionally aligned
CHA data and by retaining the high-dimensional, anatomically
aligned data, to have a full comparison of connectomes that are
aligned anatomically, at both the coarse-scale and fine-scale level,
and connectomes that are CHA-aligned, at both the coarse-scale
and fine-scale level.

We first assessed whether idiosyncrasies in cortical activity
patterns were more reliable after fine-scale hyperalignment, as
has been shown in adult cohorts (Feilong et al., 2018). Here,
we define idiosyncrasies in terms of IDMs, or the pairwise corre-
lation distance between all pairs of subjects. IDMs capture the
dissimilarity structure (or idiosyncrasies) of FC patterns across
subjects. We assessed the reliability of these idiosyncrasies by
splitting each subject's RS timeseries in half to create two
“pseudo-sessions” and calculating independent connectomes
for each split-half. For hyperalignment, we aligned each subject's
two pseudo-session connectomes to the common space indepen-
dently, treating them as we would two separate subjects, as to not
bias the reliability estimates. We then computed an IDM for each
pseudo-session and correlated the two pseudo-sessions IDMs to
measure the reliability of individual differences. This process was
performed for anatomically aligned (AA) coarse- and fine-scale
connectomes and for CHA coarse- and fine-scale connectomes
separately.

CHA, particularly at the fine scale, improved the reliability of
individual differences in FC over AA alone (Fig. 4). Across all
parcels, reliability of coarse connectomes increased from an aver-
age of r = 0.34 ± 0.1 for AA to r = 0.58 ± 0.08 for CHA (p <
0.0001). Reliability of fine connectomes increased from an aver-
age of r = 0.43 ± 0.11 for AA to r = 0.86 ± 0.07 for CHA. After
CHA, 100% of parcels at both scales showed greater reliability,
and 99% of parcels showed greater reliability at the fine scale
than those at the coarse scale. Notably, all four types of connec-
tomes showed high split-half reliability, with CHA affording the
greatest reliability. This result establishes that hyperalignment
affords access to reliable information within an individual child's
fine-scale functional connectome, affording confidence in subse-
quent results based on these connectomes.

Assessing heritability of connectome granularity
We asked whether the more reliable fine-scale connectome sim-
ply reflected the same information about cortical functional
architecture at higher magnification or a different class of infor-
mation that may be more or less heritable. We investigated this
question by calculating the heritability of the two coarse-scale
and the two fine-scale connectomes. We hypothesized that heri-
table factors determine the skeletal attributes of the connectome
and are more evident at the coarse spatial scale (Lenroot et al.,
2009; Blokland et al., 2012; Schmitt et al., 2014), whereas the
detailed configurations of connectomes reflect the interaction
of the heritable connectome with unique experiential factors pro-
ducing variability at a finer spatial scale.

The heritability analysis used RSFC data from 778 subjects
comprising 219 dizygotic twin pairs and 170 monozygotic twin
pairs (Table 1). As in prior analyses, the CHA model was trained
on 200 unrelated subjects, then the connectomes of the 778 twin
subjects were hyperaligned to this model. Functional connec-
tomes of vertex granularity are an inherently high-dimensional
phenotype; thus, to explicitly model the heritability of this

phenotype, we used a multidimensional estimate of heritability
(h2-multi; Anderson et al., 2021) to model both the phenotypic
similarity matrix between participants as well as the genetic kin-
ship matrix (see Materials and Methods, Multidimensional her-
itability analysis for more information).

We found that both the AA and CHA coarse-scale connec-
tomes were more heritable than the more reliable fine-scale con-
nectomes (mean coarse-scale h2-multi = 0.18 ± 0.05; mean
fine-scale h2-multi = 0.10 ± 0.03; p < 0.0001), with 99% of parcels
showing greater heritability for coarse-scale connectomes
(Fig. 5). At the coarse scale, anatomically aligned functional con-
nectomes are significantly more heritable than hyperaligned con-
nectomes (AA h2-multi = 0.20 ± 0.05; CHA h2-multi = 0.16 ±
0.04; p < 0.0001). These results indicate that connectivity infor-
mation aligned coarsely based on anatomical features are under
strong genetic control, consistent with previous studies showing
genetic control over cortical anatomy in children (Peper et al.,
2009) and network-level RSFC (Glahn et al., 2010).

Prediction of neurocognitive abilities
Finally, we asked whether we could use the different types of
information represented by different connectome scales to tease
apart individual differences in neurocognitive performance. As
a proof-of-principle analysis, we looked at whether the varia-
tion in reported heritability between general cognitive ability
and learning/memory relates to the functional significance of
our heritability and reliability findings. We focused on the com-
posite scores for general cognitive ability and learning/memory
based on evidence of their differential heritability (Bouchard,
2004; Plomin and Spinath, 2004; Fletcher et al., 2014; Mollon
et al., 2021). An initial h2 estimation based on intraclass corre-
lation (Falconer's formula; Falconer, 1996) yielded h2 of general
cognitive ability loadings = 0.39 and h2 of learning/memory =
0.19 (Fig. 6A) for our sample, which converged with our expec-
tations based on prior literature (Plomin and Spinath, 2004;
Need and Goldstein, 2009; Fletcher et al., 2014; Mollon et al.,
2021). A more sensitive heritability analysis, including signifi-
cant covariates for site, sex, and ethnicity, estimated h2 of these
traits in the present cohort to be higher and more similar than
the values reported in the literature: for the participants in our
twin sample (n = 748 with complete data), we estimated h2 of
general cognitive ability as 0.884 ± 0.01 and h2 of learning/
memory to be 0.837 ± 0.01 (Fig. 6B). To assess whether our
higher heritability scores were attributable to subject selection
based on quality and amount of neuroimaging data, we repli-
cated this analysis on the entire cohort (n = 9,519 with complete
data) and found the same pattern of results: general cognitive
ability h2 = 0.83 ± 0.02; learning/memory h2 = 0.80 ± 0.02
(Fig. 6C).

A final consideration was the possibility that the neurocogni-
tion PC loadings are a more stable phenotype than individual
cognitive task scores, but that the individual tasks are more var-
iably heritable. To investigate this, we broke down the composite
scores into the tasks that primarily load onto each component in
the BPPCA solution and found a scaling of heritability relative to
the component score. Tasks loading more strongly onto the
general cognitive ability component (PicVocab, Reading) showed
stronger heritability, whereas tasks loading more strongly onto
the learning/memory component (CardSort, Picture) showed
weaker heritability. A task loading onto both components evenly
(List) showed intermediate heritability (Fig. 6D), which indicates
that general cognitive ability and learning/memory have different
genetic contributions in this sample and the composite scores are
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complicated by their overlapping tasks. Notably, even with over-
lap in the two components (i.e., List task loading on both), we still
see distinct brain-based predictions associated with heritability,
supporting our approach as a proof-of-principle analysis. Based
on the neurocognitive component scores, we examined if the
different types of information represented at different

connectome scales captured dissociable variance in neurocogni-
tive traits. Given that CHA improves reliability of individual
differences in the fine-scale connectome, we hypothesized that
CHA fine connectomes would capture more variance in both cog-
nitive traits (general cognitive ability, learning/memory) than the
CHA coarse, AA coarse, or AA fine connectomes. Moreover, we
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Figure 4. The reliability of individual differences in FC profiles was analyzed with data from 526 unrelated subjects. Subjects’ timeseries data for each parcel were split into two pseudo-
sessions, which were hyperaligned into the trained common space independently. For each region, split-half timeseries data pre- and post-hyperalignment were used to compute FC profiles at
the fine and coarse scales. IDMs were computed across all pairs of subjects for each data split. IDMs were then correlated (Pearson's r) across splits and repeated for each parcel. This process was
repeated for all parcels at the coarse and fine scales, before and after hyperalignment. A, Spatial distribution of reliability scores before and after hyperalignment at the fine and coarse scales, as
visualized on the cortical surface for each parcel. B, The reliability of individual differences increases after hyperalignment for all parcels. 99% of fine connectivity profiles (darker) are more reliable
than the coarse ones (lighter) regardless of alignment type. C, Box-and-whisker plots showing the distribution of IDM reliability scores across parcels within connectome type. Box shows first
quartile, median, and third quartile of distribution. Whiskers represent 1.5 times the interquartile range, and points represent outlier values.
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Figure 5. Heritability of FC was estimated using a multidimensional heritability model (Anderson et al., 2021) using resting-state fMRI data from 778 9–10-year-olds (170 MZ pairs and 219 DZ
pairs). FC between a given parcel and all other parcels in the brain was calculated at fine and coarse granularities, before and after CHA. The coarse-scale connectivity profiles aligned based on
cortical anatomy are the most heritable. A, Spatial distribution of h2-multi scores before and after hyperalignment at the fine and coarse scales, as visualized on the cortical surface for each parcel.
B, For both anatomically aligned and hyperaligned data, connectivity profiles are more heritable when calculated at the coarse scale than the fine scale (99.6% of the time). C, At the coarse scale,
the anatomically aligned connectivity profiles are more heritable than the hyperaligned ones, but not at the fine scale, which is under comparatively minuscule genetic control. Box-and-whisker
plots showing the distribution of h2-multi across parcels within connectome type. Box shows first quartile, median, and third quartile of distribution. Whiskers represent 1.5 times the inter-
quartile range, and points represent outlier values.
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hypothesized that the most heritable connectome (AA coarse)
would reflect more variance in a more heritable cognitive trait
(general cognitive ability) relative to a less heritable one (learn-
ing/memory).

We used a PCA ridge regression to predict scores on these two
cognitive domains from connectivity profiles at each scale.
Models were trained using the IDMs across 526 unrelated sub-
jects, computed for each scale, alignment, and parcel. Crucially,
predictions based on IDMs ensure that all models are receiving
data with the same number of features, regardless of connectome
type, since IDMs are 526 subjects by 526 subjects where each cell
is the pairwise covariance of the connectomes of two unrelated
subjects. We used a nested cross-validation procedure to tune
hyperparameters (number of PCs and α) then applied the model
to predict loadings from unseen subjects (see Materials and
Methods, Neurocognition PC prediction analysis for more
details). Regression model scores are presented as R2 between
predicted scores and true values, p values for each parcel are
assessed by permuting neurocognition scores 1,000 times, and
scores were compared across connectome types using permuta-
tion tests with 10,000 iterations.

General cognitive ability was similarly predicted by CHA fine,
AA coarse, and AA fine connectomes (average R2 ± SD across
parcels, CHA fine = 0.0133 ± 0.021; AA fine = 0.0134 ± 0.020;
AA coarse = 0.0124 ± 0.018; Bonferroni-corrected p values,
CHA fine vs AA fine pbonf = 1.0; CHA fine vs AA coarse pbonf
= 1.0; AA fine vs AA coarse pbonf = 0.39; Fig. 7, left), indicating
that the information content carried in each of these connec-
tomes predicts general cognitive ability. Compared with the other
three connectomes, CHA coarse connectomes predicted signifi-
cantly less variance in general cognitive ability (R2 = 0.006 ±
0.02; CHA coarse vs CHA fine pbonf < 0.0001; CHA coarse vs
AA fine pbonf < 0.0001; CHA coarse vs AA coarse pbonf <
0.0001), suggesting that functionally aligning fine-scale infor-
mation and then smoothing over the functional information
space actually diminish the specificity of the information.

After performing permutation tests at each parcel and thresh-
olding at pFDR < 0.05%, 52.7%, 53.3%, 35%, and 54% of parcels
predicted general cognitive ability significantly greater than
chance at the AA coarse, AA fine, CHA coarse, and CHA
fine, respectively.

Learning/memory is regarded as a less heritable psychological
trait (h2 = 0.36–0.56; Mollon et al., 2021), so we hypothesized that
the information content of the coarse connectomes (the more
heritable information) would contribute less to the prediction
of this trait relative to the fine connectomes (the more reliably
idiosyncratic information). Prediction of learning/memory
scores were significantly higher for the CHA fine connectome
than those for the other connectome types (average R2 ± SD
across parcels, CHA fine = 0.018 ± 0.012; CHA coarse = 0.011 ±
0.014; AA fine = 0.008 ± 0.014; AA coarse = 0.007 ± 0.014;
Bonferroni-corrected p values, CHA fine vs CHA coarse pbonf
< 0.0001; CHA fine vs AA fine pbonf < 0.0001; CHA fine vs AA
coarse pbonf < 0.0001; CHA coarse vs AA fine pbonf = 0.007;
CHA coarse vs AA coarse pbonf < 0.0001; AA fine vs AA coarse
pbonf = 0.529; Fig. 7, right). The gap in the percentage of parcels
capturing a significant amount of variance was also more pro-
nounced for this trait; 37.2%, 40%, 53.1%, and 80.5% for AA
coarse, AA fine, CHA coarse, and CHA fine, respectively.

Prior work has indicated that in-scanner head movement is
correlated with neurocognition scores. Despite strict participant
exclusion based on data quality control (Fig. 1), our cohort still
showed a mild relationship between mean FD and neurocogni-
tive scores (n = 526; Pearson's r =−0.073; p = 0.09 for general
cognitive ability; r =−0.135; p < 0.05 for learning/memory). To
control for possible effects of movement on our prediction, we
repeated the neurocognition PC prediction analysis controlling
for FD. Model performance after controlling for FD was almost
identical to our original results; the correlation of model perfor-
mance between FD-controlled prediction and original prediction
was r = 0.999 for general cognitive ability and r = 0.995 for learn-
ing/memory (Fig. 8).

Figure 6. Heritability of neurocognitive measures. A, h2 of general cognitive ability and learning/memory were computed using Falconer's formula, which is two times the difference between
ICC among MZ pairs and ICC DZ pairs. h2 general cognitive ability = 0.39; h2 learning/memory = 0.19. B, h2r of general cognitive ability and learning/memory were computed using SOLAR
polygenic across participants in our twin cohort (full sample, n = 778; with complete data, n = 748). h2 of general cognitive ability = 0.884 ± 0.01; h2 of learning/memory = 0.837 ± 0.01
(reported as SOLAR polygenic h2r ± standard error). Significant covariates included site, ethnicity, and sex. C, To evaluate whether the neurocognitive heritability effect was due to sampling bias
toward the subjects included in the neuroimaging analysis, we recalculated h2r (as in B) of the same components using the full ABCD Study sample (full sample, n = 11,875; with complete data,
n = 9,519). Estimate of general cognitive ability = 0.830 ± 0.02, learning/memory = 0.800 ± 0.02. D, h2r analysis of the individual NIH Toolbox tasks loading onto the general cognitive ability
and learning/memory components. Tasks loading more strongly onto the general cognitive ability component (PicVocab, Reading) showed stronger heritability whereas tasks loading more
strongly onto the learning/memory component (CardSort, Picture) showed weaker heritability and a task loading onto both components evenly (List) showed intermediate heritability.
PicVocab, Toolbox Picture Vocabulary Task (language skills and verbal intellect); Reading, Toolbox Oral Reading Recognition Task (read and pronounce single words), List, Toolbox List
Sorting Working Memory Test; CardSort, Toolbox Dimensional Change Card Sort Task (cognitive flexibility); Picture, Toolbox Picture Sequence Memory Test.
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Discussion
In this study, we investigated whether heritable and experiential
factors have dissociable effects on the development of coarse-
and fine-grained functional connectomes. We hypothesized
that the coarse structure of connectivity between cortical regions
would be under stronger genetic control, whereas the fine struc-
ture of local variations in connectivity would show more pro-
nounced and reliable individual differences. We improved
access to fine-scale connectivity by applying CHA to resting-
state fMRI data in a large sample of children. Our study presents
the first example of defining and applying a fine-scale functional
common space to a developmental cohort. This represents an
important advancement as it disentangles shared connectivity
patterns and meaningful individual differences from misaligned
cortical anatomy or measurement noise, which commonly
plague developmental neuroimaging (Power et al., 2012;
Satterthwaite et al., 2012; Birn et al., 2013; Fair et al., 2020;
Kennedy et al., 2022).

Using RSFC from a representative sample of 200 unrelated
children, we built a fine-scale model connectome and hypera-
ligned a separate set of 915 children's data to that model.
Pre-hyperalignment, anatomically aligned connectivity patterns
exist in distinct, individual representational spaces and are,

therefore, both less reliable and less predictive of cognition.
Hyperalignment resamples an individual's vertex-wise connec-
tivity profiles into the model connectivity profiles, which affords
meaningful comparisons of vertex-wise profiles across individu-
als. Prior literature has relied upon AA, or matching children's
data to a common anatomical template, and then applying a par-
cellation to extract one coarse pattern per parcel (Marek et al.,
2019, 2022; Sripada et al., 2020; Chen et al., 2022). Averaging
connectivity profiles across neighboring vertices within a parcel
can factor out misaligned vertices to reveal coarse connectivity
structure but obscures fine-scale information. We considered
multiple connectome types—coarse- and fine-grained, pre- and
post-CHA—to understand the effects of genetics and experience
at different scales of connectivity.

Using CHA, we revealed shared patterns of fine-scale FC with
reliable individual variation. The coarse-scale connectome (AA
coarse) shows only moderately reliable idiosyncrasies (mean
r = 0.34), versus the CHA fine connectome's mean reliability of
r = 0.86 (Fig. 4). Across the cortex, individual differences in
fine-scale FC were more reliable than those in the coarse-scale,
suggesting that traditional alignment diminishes spatially
resolved functional topographies. By estimating the heritability
of RSFC at each scale and alignment in twins, we showed that

Figure 7. Neurocognition prediction results. Distribution of R2 values across all parcels for prediction of general cognitive ability (left) and learning/memory (right). Histogram heights
correspond to density of scores and lines represent the mean of the score distribution. For the purpose of distribution matching, R2 values are not thresholded here.
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idiosyncrasies in fine-scale connectomes were dissociable from
those in the coarse-scale connectome. Multiscale heritability
analysis of AA coarse connectomes attributed ∼20% (5.47–
33.06%) of variance to genetic relatedness, converging with
expectations based on adult RSFC (Glahn et al., 2010;
Miranda-Dominguez et al., 2018; Anderson et al., 2021) and
how neuroimaging phenotypes show increasing heritability
with age (Blokland et al., 2012; Elliott et al., 2018). At the fine
scale, h2 estimates dropped to ∼10% regardless of alignment
(CHA, 3.1–19.2%; AA, 2.0–16.67%), suggesting that idiosyncra-
sies in fine-scale RSFC were likely more associated with unique
experience and gene–environment interactions than genetic fac-
tors (Fig. 5). Individual differences in fine-scale connectivity after

hyperalignment were more reliable than differences in
coarse-scale connectivity, but they were less heritable, indicating
a dissociation between the spatial scales of heritable and reliable
RSFC. Our final analysis examined the cognitive relevance of this
dissociation. The most reliably idiosyncratic (CHA fine) and
most heritable (AA coarse) connectomes similarly predicted
general cognitive ability, a canonically heritable cognitive trait.
In contrast, the most reliably idiosyncratic connectome (CHA
fine) best predicted a less heritable cognitive trait (learning/mem-
ory; Fig. 7).

Taken together, we demonstrate a link between reliable, herita-
ble, and predictive scales of FC and highlight the importance of
nuanced, multiscale connectivity analyses for comprehensively

Figure 8. Replication of prediction results after controlling for head movement. A, Participants’ loadings onto the neurocognition PCs are mildly anti-correlated with mean FD. Each participant
included in the neurocognition PC analysis (502 with complete data) is represented as a point in the scatterplots. B, To account for the relationship between head movement and cognitive scores,
we replicated the prediction analysis controlling for mean FD. After getting predicted scores for each participant with leave-one-out cross validation, we then either computed Pearson's cor-
relation between model predictions and true scores (“correlation” on the x-axis) or a partial correlation, including FD as a covariate (“Partial correlation” on the y-axis). Prediction results are
replicated after controlling for movement. Note that in main analysis (Fig. 7), the prediction results (without the additional control for movement) are presented as adjusted R2, but for equal
comparison with the partial correlation, we present prediction results as a Pearson's correlation, prior to the adjusted R2 calculation.
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understanding individual differences during development. Our
findings dovetail with the interactive specialization framework of
functional brain development, which states that the development
of the functional connectome is not solely determined by a blue-
print, but the interaction of a heritable template of connections
and individualized experience (Johnson, 2011). We present neural
evidence of this framework: the coarse connectome serves as a her-
itable blueprint which represents more heritable cognitive pheno-
types. The blueprint encoded in coarse-scale connectomes
becomes part of the fine-scale connectome during development,
as prediction models based on AA coarse never outperform those
based onCHA fine, but the fine-scale connectome affords cognitive
prediction beyond the coarse.

Recent work has recognized the need for massive numbers of
subjects to reliably associate brain phenotypes with behavior,
specifically in developmental RSFC (Marek et al., 2022). This
could be attributed to the complexity of neuroimaging pheno-
types, but by leveragingmachine learning advances like multivar-
iate models, functional alignment, and individualized atlases, we
can improve prediction (Dubois and Adolphs, 2016; Kong et al.,
2019, 2021, 2023; Rosenberg et al., 2020; Feilong et al., 2021,
2022; Chen et al., 2022; DeYoung et al., 2022). We demonstrate
hyperalignment's power as a tool for understanding developing
brain–behavior associations. Here, hyperalignment was trained
on RSFC from 200 children and tested on a separate cohort, using
<20 min of rs-fMRI per subject. The prediction results assure
that the increased reliability of individual differences was driven
by generalizable, shared signals in the hyperalignment model
rather than overfitting to subject-specific signals or simply
higher-dimensional data, since CHA improved reliability over
AA at the fine scale as well. By performing subsequent analyses
on (dis)similarity matrices, we ascertain that our findings are
driven by the information content represented in different con-
nectomes, rather than the dimensionality difference between
coarse- and fine-scale connectomes.

This study should be interpreted in light of potential
limitations. Though statistically significant, our predictions
accounted for low variance in cognitive measures relative to adult
studies (Finn et al., 2015; Dubois et al., 2018b; Feilong et al.,
2021). While task-based FC is more stable and behaviorally pre-
dictive than RSFC among adults (Rosenberg et al., 2016; Greene
et al., 2018; Feilong et al., 2021), this requires sufficient amounts
of high-quality data challenging to collect in children (Satterthwaite
et al., 2012; Kennedy et al., 2022). Prior work shows that RSFC is
more heritable than task-based FC (Elliott et al., 2018), suggesting
that tasks add cognitive load and introduce idiosyncratic informa-
tion processing less attributable to genetic factors.

Our focus on neurocognition composite scores should be
viewed as a proof-of-principle analysis relating the heritability
and reliability of individual differences in neuroimaging pheno-
types to differentially heritable behavioral phenotypes due to lim-
itations in h2 estimations of psychological traits. An initial model
of neurocognitive trait heritability (ICC-based Falconer's for-
mula) yielded estimates of general cognitive ability and learn-
ing/memory convergent with prior literature (Plomin and
Spinath, 2004; Need and Goldstein, 2009; Fletcher et al., 2014;
Mollon et al., 2021). A more sensitive model (SOLAR
Polygenic) including demographic covariates yielded h2 esti-
mates higher and more similar than previously reported (Fig.
6). Possible explanations for this discrepancy include our sam-
ple's demographic differences with the literature: our sample is
aged 9–10 years, whereas prior studies report larger age and h2

ranges [h2 of general cognitive ability = 0.54–0.85 at 10–12 years

(Bouchard, 2004); 0.60–0.73 at 8–21 years (Mollon et al., 2021);
h2 of learning/memory = 0.18–0.55 at 8–21 years (Mollon et al.,
2021) and 0.39 at 18–67 years (Fletcher et al., 2014)]. Our sample
is more racially diverse than prior studies, which generally con-
trol for genetic background by using homogeneous samples, pre-
dominantly individuals of European descent (Glahn et al., 2010;
Haworth et al., 2010; Popejoy and Fullerton, 2016; Savage et al.,
2018; Grasby et al., 2020). Our predictions align with the h2 val-
ues reported by Mollon et al. (2021), which used a younger and
more diverse cohort than prior studies and more like our sample.
Future work could investigate whether the heritability scores
become clearer with age and how that relates to brain-based pre-
diction, using a future release of ABCD data.

This paper presents several novel findings. First, hyperalign-
ment can be used as a tool to improve the reliability and beha-
vioral relevance of FC in children. After hyperalignment,
reliability of individual differences in RSFC is improved at the
fine scale relative to the coarse scale, but the heritability of these
signals is weakened. Finally, we present a potential application of
this dissociation in the fine- and coarse-scale connectomes to
show how the heritability of RSFC relates to ability to predict
cognition based on the heritability of neurocognitive traits.
With the substantial twin cohort, behavioral testing, and longitu-
dinal neuroimaging data included in the ABCD Study, future
work could investigate the connection between heritability and
predictivity of FC over time, as the heritability of both neurocog-
nitive measures and neuroimaging-based phenotypes increase
with age (Thompson et al., 2001; Haworth et al., 2010;
Blokland et al., 2012; Jansen et al., 2015). Moreover, this
approach could be used to investigate how functional topogra-
phies reflect cognitive development over time, by hyperaligning
a subject to themselves at multiple timepoints. In conclusion,
the current study shows that by breaking apart the pieces of
the functional connectome into their coarse and fine structures,
we can better understand how these scales interact to scaffold
and instantiate reliable idiosyncrasies in brain and cognition dur-
ing development.
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