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Abstract
Learning to perform a new behavior is constrained by the
geometry, or intrinsic manifold, of the neural population
activity supporting that behavior. Recent work highlights
the importance of manifolds capturing low-dimensional
neural dynamics for learning to control brain-computer
interfaces (BCIs). In non-human primate studies, BCI
learning has been expedited and stabilized by mapping
neural recordings from motor cortex through a low-
dimensional manifold and then to a feedback display. In
macaque motor cortex, the manifold uncovers more con-
cise and plastic neural signals. Here, we investigate the
manifold constraints on human learning in brain regions
associated with higher-order cognitive processes using a
non-invasive BCI. Using a custom neural manifold learn-
ing framework for real-time fMRI neurofeedback and a vir-
tual reality stimulus, we trained participants in a multi-
session study to perform a navigation task using their
brain activity. Task performance was significantly im-
proved by feedback based on the brain’s intrinsic rela-
tive to lower-ranked (”off”) manifold activity. Neural ac-
tivity was modulated along the manifold over the course
of neurofeedback training, such that neural activity be-
came better aligned with the components of the manifold
determining the feedback as performance improved.
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Introduction
Learning new behaviors requires neural populations and net-
works to learn to generate new activity patterns. Some activity
patterns are more challenging to learn to generate than oth-
ers, thus constraining the behaviors an organism can learn to
produce. BCI studies using non-human primates have shown
that the activity a neural population can learn to generate is
computationally constrained by its intrinsic connectivity and
co-modulation (Sadtler et al., 2014; Golub et al., 2018; Oby et
al., 2019), which creates a low-dimensional “neural manifold.”
These studies have shown that, within motor cortex, activity
sharing low-dimensional structure with what the population al-
ready represents (“on-manifold” activity) is easier to learn to
modulate (Sadtler et al., 2014), but neural activity farther “off-
manifold” is harder or impossible to learn (Oby et al., 2019).

Can neural manifolds of higher-order cognitive regions be
harnessed to enhance human learning? Neurofeedback is
a form of BCI where neural activity is measured in real-time
and presented to participants (e.g., visually on a screen) to
facilitate self-regulation of a specific neural state (Sitaram et
al., 2017). Neurofeedback training with fMRI benefits from
fMRI’s high spatial resolution and has allowed researchers
to probe the plasticity of neural substrates underlying cogni-
tive processes including visual perception (Shibata, Watan-
abe, Sasaki, & Kawato, 2011), attention (deBettencourt, Co-
hen, Lee, Norman, & Turk-Browne, 2015), and memory
(deBettencourt, Turk-Browne, & Norman, 2019). Despite its

potential for answering ages-old questions in cognitive neuro-
science, neurofeedback studies have had limited impact thus
far, due to the extensive training they require (5–10 fMRI ses-
sions) and the variable outcomes they have yielded.

Prior studies have not considered how the computational
principles underlying neural activity (i.e., neural manifolds)
may relate to learning in the human brain. As such, neuro-
feedback training agnostic to a participant’s neural manifold
may actually encourage brain states that are computationally
inefficient or impossible to generate, hindering the generation
of novel behaviors. Here, we trained humans to perform a
virtual reality (VR) navigation task with their brains using real-
time fMRI neurofeedback. Participants successfully learned
to modulate activity in a network of navigation-related regions
to self-directed navigation within one neurofeedback training
session when administered feedback on-manifold but not off-
manifold. Participants adjusted and re-learned BCI mappings
still within the manifold, but not off the manifold. In sum, non-
invasive BCI learning in humans shows low-dimensional con-
straints similar to non-human primate studies, which extends
beyond motor learning to higher-order cognition.

Figure 1: (A) Calibration data were preprocessed and
masked. Then, they were used to fit a 20-D T-PHATE manifol
embedding and an autoencoder used to extend the manifold.
(B) Visualizations of activation during the task, where a point
is a brain volume in T-PHATE space colored by the avatar’s
location in the game arena at that timepoint. (C) Defining in-
trinsic, within, and off-manifold mappings such that the same
brain activity in T-PHATE space (orange point) could result in
3 different angles.

Materials and methods
Experimental overview We enrolled 20 participants (9 fe-
male; 25.8± 5.5 years) in a 4–5 session real-time fMRI ex-
periment. In each session, participants completed 4 runs (ap-
prox. 10 min/run) of a game where they had to direct an avatar



through a virtual environment to a target. Runs contained tri-
als of approximately 20s (dependent upon performance) fol-
lowed by 6s rest. In session 1, participants played the game
using a MR-compatible joystick in the scanner. Using these
data, we estimated a neural manifold of this task from a net-
work of regions (defined with the search term “navigation” on
neurosynth.org). Manifold learning used an algorithm opti-
mized for the dimensionality, noise, and dynamics of fMRI data
(Busch et al., 2023) (Fig 1A,B). In subsequent sessions, we
used rt-cloud (Wallace et al., 2022) and a custom procedure
to map brain activity to the avatar’s turning angle in real-time
(Fig. 2A) (Busch et al., 2022; Huang et al., 2022).

Neurofeedback training fMRI volumes were acquired ev-
ery 2s and transmitted from the scanner to a remote high-
performance computing cluster for processing and embedding
into the pre-fit manifold (Fig. 2A) (Wallace et al., 2022). Em-
bedded data were then used to decode the avatar’s next turn-
ing angle via one of three manifold components (i.e., intrinsic-,
within-, and off-manifold [IM, WM, OM]), which captured the
most, second most, and least variance in the manifold.

Participants were instructed to navigate the avatar to the
target and were rewarded for minimizing excess distance trav-
eled within each trial. Neurofeedback training used a staircas-
ing procedure to adapt the control a participant’s brain state
exerted over the avatar’s movement. The feedback signal was
a weighted combination of the decoded angle and an adap-
tive parameter (Brain Control). After each trial, Brain Con-
trol increased, decreased, or remained the same depending
upon performance. In the first feedback session (session 2),
all participants received the IM mapping, and all participants’
Brain Control staircasing began at 20%. For each of the fi-
nal two sessions, participants received either the WM or OM
component (e.g., session 3 = WM and session 4 = OM, or
vice-versa), with session order counterbalanced across par-
ticipants. This procedure allows us to consider each subject
as their own control.

Results
First, we validated that the T-PHATE embeddings could cap-
ture task structure represented in the brain. Visually, embed-
dings of brain activity during this task reflect the location in the
game arena (shown for two sample subjects in Fig. 1B). This
lends confidence that our region of interest is implicated in this
task and the T-PHATE manifold highlights this.

As Brain Control is scaled linearly with task performance,
higher Brain Control serves as a behavioral metric of learn-
ing to control the BCI. We quantified behavioral learning as
the change in Brain Control across all trials in a session (Fig.
2B). Learning was significant in IM sessions, significant in WM
sessions, but not in OM sessions.

Behavioral learning effects are hypothesized to be sup-
ported by neural changes, specifically an increase in the
alignment of neural activity to the component of the manifold
mapped to the feedback display (i.e., the one being trained).
We calculated alignment of new neural activity with the man-

Figure 2: (A) The closed-loop procedure collects whole-brain
data and transmits them to a remote HPC cluster for motion-
correction, masking, normalization, and analysis, returning a
new angle to the display computer within 2s. (B) Behavioral
learning was quantified by subtracting the ending Brain Con-
trol from the starting Brain Control during each session. (C)
Shifts in neural variance were computed as the explained vari-
ance of a manifold component at the start vs. the end of
neurofeedback training, within a session.∗ ∗ ∗ = p < 0.001,
∗∗= p < 0.01, ∗= p < 0.05, ∼= p < 0.1

ifold components as the change in the neural variance ex-
plained by the component at the start vs. end of a neurofeed-
back session. During IM and WM sessions, the proportion
of explained variance increased significantly from the start to
end of the session. The IM session showed a greater increase
in variance explained than the OM session, which did not sig-
nificantly change in the variance it explained (Fig. 2C).

In sum, we introduced a framework for administering neu-
rofeedback that respects that computational constraints on
learning in the brain, and we do so in a way optimized for
the challenges of non-invasive human neuroimaging. By pro-
cessing brain activity as it lies along a low-dimensional man-
ifold, behavioral metrics of learning in our experiment were
stronger, more robust across brains, and faster relative to
other neurofeedback experiments. Further, we show that
manifold constraints on learning exist not just in motor cortex,
as investigated in the non-human primate literature (Sadtler et
al., 2014; Hennig et al., 2018; Golub et al., 2018; Oby et al.,
2019), but also in brain regions related to higher-order cog-
nition. Our results suggest important applications for brain-
based cognitive training and neuroprothetics.
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