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ABSTRACT

BACKGROUND: To progress adolescent mental health research beyond our present achievements—a complex
account of brain and environmental risk factors without understanding neurobiological embedding in the
environment—we need methods to uncover relationships between the developing brain and real-world
environmental experiences.

METHODS: We investigated associations between brain function, environments, and emotional and behavioral
problems using participants from the Adolescent Brain Cognitive Development (ABCD) Study (n = 2401 female). We
applied manifold learning, a promising technique for uncovering latent structure from high-dimensional biomedical data
such as functional magnetic resonance imaging. Specifically, we developed exogenous PHATE (potential of heat-
diffusion for affinity-based trajectory embedding) (E-PHATE) to model brain-environment interactions. We used E-
PHATE embeddings of participants’ brain activation during emotional and cognitive processing tasks to predict
individual differences in cognition and emotional and behavioral problems both cross-sectionally and longitudinally.
RESULTS: E-PHATE embeddings of participants’ brain activation and environments at baseline showed moderate-
to-large associations with total, externalizing, and internalizing problems at baseline, across several subcortical
regions and large-scale cortical networks, compared with the zero-to-small effects achieved by voxelwise data or
common low-dimensional embedding methods. E-PHATE embeddings of the brain and environment at baseline
were also related to emotional and behavioral problems 2 years later. These longitudinal predictions showed a
consistent moderate effect in the frontoparietal and attention networks.

CONCLUSIONS: The embedding of the adolescent brain in the environment yields enriched insight into emotional
and behavioral problems. Using E-PHATE, we demonstrated how the harmonization of cutting-edge computational
methods with longstanding developmental theories advances the detection and prediction of adolescent emotional
and behavioral problems.

https://doi.org/10.1016/j.bpsc.2024.07.001

Nearly 75% of all mental health disorders onset during
adolescence, with half of all mental health disorders occurring
by age 14 (1). Adolescents who experience mental health
problems are at heightened risk for lifelong challenges
including lower educational attainment, increased involvement
with the legal system, and chronic physical and mental health
problems (2). Given the impacts of mental health problems on
individuals and society, developmental scientists have long
grappled with understanding the emergence of emotional and
behavioral problems in youths.

An extensive body of research has identified factors related
to emotional and behavioral problems, including neurobiolog-
ical and environmental factors (3,4). Much of this work has
been siloed into work specifying the neurobiology or the
environmental factors related to mental health problems in
adolescence. Neurobiological theories of emotional and

behavior problems have emphasized that 3 key brain regions
are especially sensitive during adolescent development: pre-
frontal cortex, amygdala, and hippocampus (5). These brain
regions support self-regulation and affective processing (6,7),
and differences in their functional activation have been related
to various aspects of emotional and behavioral problems (5).
Other research has identified environmental exposures that
increase risk for the development of emotional and behavioral
problems (8). Meta-analyses report medium to large effects
between adversity in adolescents’ families (e.g., conflict,
caregiver nonacceptance) and neighborhoods (e.g., experi-
encing violence or disadvantage) and emotional and behavioral
problems (9-11).

Some environmental risk factors (e.g., parenting styles,
community disadvantage) have been related to the function of
mental health-related brain regions (12,13). For example, a
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recent study found that the interaction of neighborhood
adversity and lower executive network activation during an
emotional working memory task was related to higher exter-
nalizing problems in adolescents (14). Additional work found
that the interaction between neighborhood adversity and
decreased amygdala activation during an emotional intro-
spection task was related to higher externalizing problems in a
sample of adolescents of Mexican origin (15). Furthermore,
another study found that neighborhood and family adversity
interacted with prefrontal cortex functional connectivity to
predict internalizing symptoms (16). Across these studies, we
can stitch together a model of emotional and behavioral
problems that includes interactions between experiences in
adolescents’ environments and brain function in regions
involved in emotion processing and cognition. Most previous
research has modeled this interaction as a linear combination
between univariate measures of brain and environment—in
other words, considering a single measurement of environ-
ment and a univariate signal of brain activation. Some recent
work has used multivariate approaches, such as canonical
correlation analysis, partial least squares regression, or prin-
cipal component analysis (PCA) ridge regression, to maximize
brain-behavior associations (17-21). However, these ap-
proaches focus on learning components of a multivariate
neural representation that are maximally predictive of a target
behavior, which may not necessarily reflect the intrinsic ge-
ometry of brain activation itself that could arise through un-
supervised methods. Moreover, they frequently fail to account
for the multivariate measures of the environment in conjunction
with brain data.

Studying the nonlinear, multidimensional interplay between
the adolescent brain and environmental risks requires
computational methods to combine and reveal structure in
high-dimensional, multimodal data. Manifold learning is
increasingly popular for highlighting complex latent structure in
high-dimensional biological data (22). Manifold learning is an
unsupervised, data-driven approach in which the dimension-
ality reduction step is not optimized to maximize a prediction,
but rather discovers a manifold of given data. Downstream,
manifold embeddings can be used to test associations be-
tween the manifold and other information and gauge the
quality or type of information represented within the manifold.
The algorithm PHATE (potential of heat-diffusion for affinity-
based trajectory embedding) was specifically designed for
high-dimensional, noisy biomedical data and has been applied
in prior work to uncover local and global latent structure in
functional magnetic resonance imaging (fMRI) data (23-25).
Prior research showed that combining PHATE with additional
data (e.g., temporal dynamics of brain responses) enhances
the relevance of embeddings for understanding complex
cognitive processing (i.e., during movie viewing) (26). However,
standard PHATE implementations cannot account for in-
teractions of additional variables outside of the high-
dimensional input data (e.g., brain data).

Here, using the Adolescent Brain Cognitive Development
Study (ABCD Study) baseline sample and 2-year follow-up
data, we investigated the interplay of environment and brain
function on emotional and behavioral problems. We tested 1)
whether PHATE can be used to enhance the behavioral rele-
vance of task-based, developmental fMRI data and 2) whether

Manifold learning predicts emotional and behavioral problems

an updated version of PHATE can be combined with envi-
ronmental data to discover latent geometric structure con-
necting adolescents’ brains, environments, and emotional and
behavioral problems. First, as a proof of concept, we showed
that PHATE embeddings of brain activation during cognitive
and emotion processing (27) were strongly associated with
individual differences in working memory performance in 9- to
10-year-old adolescents. Next, we combined the PHATE brain
activation manifold with measurements of adolescents’ envi-
ronments into a multiview manifold. Multiview approaches
combine different measurements collected from the same
samples into a single representation to be embedded in lower
dimensions. For example, temporal PHATE is a recently
introduced multiview algorithm that combines 2 signals
endogenous to brain data (i.e., calculated directly from the
fMRI measurements) (26). In the current study, we introduced
exogenous PHATE (E-PHATE), which combines participants’
PHATE brain activation manifold with data about the same
participants collected externally (i.e., family and neighborhood
adversity). We hypothesized that the development of emotional
and behavioral problems would be related to a nonlinear
interaction between the adolescent brain and their environ-
ments. E-PHATE embeddings showed a stronger relationship
with emotional and behavioral problems both cross-sectionally
and longitudinally than either the PHATE or the original vox-
elwise data (3,4,28,29). E-PHATE sheds light on the neural-
environment interplay and improves the detection and pre-
diction of emotional and behavioral problems in adolescents.

METHODS AND MATERIALS

Participants

Participants were adolescents included in the ABCD Annual
Data Release 4.0 (https://nda.nih.gov/study.htm|?id=1299).
Neuroimaging and environment data were from the baseline
assessment (ages 9-10). Emotional and behavioral data were
from the baseline and the 2-year follow-up (ages 11-12).
Participants were excluded for missing fMRI, environmental,
or mental health measures, which resulted in 4732 participants
being included in baseline analyses and 2371 participants
being included in longitudinal analyses (see Table 1 for sample
demographics; Supplemental Methods S1; Tables S3 and S4;
and Figure S1 in Supplement 1 for participant selection).

Environment Measures

Measures of the environment were selected to characterize
participants’ family and neighborhood environments at the
baseline time point. Family environment was measured using
participants’ perception of family threat (anger and conflict
expressed among family members) and family support (care-
giver acceptance). Neighborhood environment was measured
using participant and caregiver assessment of perceived
safety/crime, and the area deprivation index, a composite in-
dex of neighborhood socioeconomic  disadvantage
(Supplemental Methods S2 in Supplement 1).

Emotional and Behavioral Measures

Measures of emotional and behavioral problems were
assessed using t scores from the baseline and 2-year follow-up
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Table 1. Demographics for Participants Included in the
Baseline (Ages 9-10) and 2-Year Follow-Up (Ages 11-12)
Analyses

Baseline, 2-year Follow-Up,
Time Point n = 4372 n = 2371
Sex, Female 2401 (50.7%) 1182 (49.9%)
Race/Ethnicity
Asian 107 (2.26%) 48 (2.0%)
Black 518 (10.9%) 198 (8.4%)
Hispanic or Latinx 883 (18.7%) 424 (17.9%)
Other 513 (10.8%) 243 (10.2%)
White 2710 (57.3%) 1458 (61.5%)
Caregiver Education
Less than HS diploma 207 (4.4%) 86 (3.6%)
HS diploma/GED 426 (9.0%) 194 (8.2%)
Some college 1299 (27.5%) 653 (27.5%)
Bachelor’s degree 1463 (30.9%) 772 (32.6%)
Postgraduate degree 1334 (28.2%) 664 (28.0%)
Unknown 3 (0.06%) 2 (0.08%)
Family Income
<$50,000 1047 (22.1%) 491 (20.7%)
$50,000-$99,999 1298 (27.4%) 714 (30.1%)
>$100,000 2053 (43.4%) 1017 (42.9%)
Unknown 334 (7.1%) 149 (6.3%)

Values are presented as n (%).
GED, General Educational Development; HS, high school.

data from the Achenbach System of Empirically Based
Assessment Child Behavior Checklist (CBCL), which is a 119-
item parent-/caregiver-report survey of adolescent emotional
and behavioral problems validated for use in children ages 6 to
18 years (30). Primary analyses examined total problems and
externalizing and internalizing broadband scales. In supple-
mental analyses, we examined anxious/depression, withdrawn/
depression, somatization, aggression, and rule-breaking
behavior syndrome scales.

Neuroimaging Task Data

The in-scanner emotional n-back (EN-back) task was designed
to engage emotion and memory processing (27,31). During
each fMRI run, participants performed four 0-back (low
memory load) and four 2-back (high memory load) blocks with
happy, fearful, or neutral face or place stimuli. EN-back per-
formance was measured with sensitivity, calculated as d' =
z(hits) — z(false alarms) and adjusted for extreme values using
the Hautus adjustment method (32,33). Task information is
detailed further in Supplemental Methods S3 in Supplement 1.

fMRI data were preprocessed by the ABCD Study Data
Analysis, Informatics, and Resource Center (34). EN-back fMRI
activation was estimated for each participant using general
linear models. Following prior studies, cognitive processing
activation was measured as the contrast of 2-back and 0-back
blocks, and emotion processing activation was measured as
the contrast between emotional and neutral face blocks
(14,35). Further information about acquisition and processing
is provided in Supplemental Methods S4 in Supplement 1.
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For each contrast, we analyzed beta weights from cortical
networks [defined using the Yeo 7 network solution (36) and
the Shaefer 400 parcellation (37)] and subcortical regions
[defined using the Scale | Tian subcortical parcellation (38)].
Then, we extracted 1 beta weight per voxel within each region
or network and then vectorized the multivoxel beta weights,
which resulted in 1 vector of voxelwise beta weights for each
region, participant, and contrast. All participants’ vectors were
stacked into a single matrix for each region and contrast, and
henceforth we refer to these matrices as voxelwise data.

PHATE Manifold Learning

We tested whether manifold learning uncovered behaviorally
relevant brain activation during cognitive and emotional pro-
cessing, which could be used to improve prediction of
emotional and behavioral problems. First, we applied the
PHATE algorithm. PHATE embeddings denoise and highlight
local and global nonlinear structure among data points in a
low-dimensional representation. Prior work has shown that
PHATE embeddings of fMRI data improve the sensitivity of the
data for predicting features such as functional brain maturity
(25) and visual category information (24,26). Using PHATE, we
embedded the voxelwise data for each region and contrast
into lower dimensions to test whether the PHATE embeddings
uncovered individual differences in brain function related to
cognition more strongly than the voxelwise data.

E-PHATE Manifold Learning

We designed E-PHATE to model this interplay as a low-
dimensional manifold. We applied a dual-diffusion (26)
approach to combine exogenous information about adoles-
cents’ environments with their brain activation manifold. The E-
PHATE procedure starts by calculating a PHATE diffusion
matrix over the voxelwise data, which can be considered the
affinity among participants’ voxelwise activation vectors. E-
PHATE also calculates a second affinity matrix over those
participants’ scores on additional, exogenous variables (i.e.,
family conflict, caregiver acceptance, participant- and
caregiver-perceived neighborhood crime/safety, and neigh-
borhood disadvantage), and these views are combined using
dual-diffusion to calculate the E-PHATE diffusion matrix. This
matrix is then embedded into D dimensions using multidi-
mensional scaling (where DeN; D e{2,3} for visualization)
(Figure 1; see Supplemental Methods S5 in Supplement 1 for
the algorithm).

Benchmarking Manifold Learning Methods

In the main analyses, we benchmarked the relevance of
E-PHATE and PHATE embeddings against their corresponding
(i.e., within region and contrast) voxelwise data. In supple-
mental analyses, we benchmarked E-PHATE with PCA (a linear
dimensionality reduction method) and universal manifold
approximation and projection (UMAP) (39) (a common
nonlinear embedding method) (Supplemental Methods S7 in
Supplement 1). We also benchmarked E-PHATE with variants
to test the impact of specific environment variables and algo-
rithmic choices (Supplemental Methods S8 and S9 in
Supplement 1). As in prior work, all analyzed embeddings were
20-dimensional for consistency across methods and regions
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A Exogenous PHATE (E-PHATE) procedure
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Figure 1. Exogenous PHATE (E-PHATE) procedure. (A) E-PHATE models the interactions between brain activation and exogenous information about
participants using multiview manifold learning. In this schematic, the first view of E-PHATE takes as inputs a vector of voxelwise beta values for each
participant and computes a PHATE-based affinity matrix between participants’ brain activations. The second view takes a vector of environment scores for
each of those participants and builds an affinity matrix across those scores. Both matrices are row-normalized to become transition probability matrices. These
2 views are combined into the E-PHATE diffusion matrix, which now captures both brain and environmental relations among participants. The E-PHATE matrix
is then embedded using metric multidimensional scaling. Two dimensions and a subset of participants are shown for visualization; 20 dimensions were used
for the main analysis. Participants’ coordinates in E-PHATE dimensions visually reflect individual differences along emotional and behavioral problems
(e.g., externalizing problem scores). The ADI is a composite index of neighborhood disadvantage, the CRPBI measures caregiver acceptance, the FES
measures family conflict, the NCY measures youth-perceived neighborhood safety/crime, and the NSC measures caregiver-perceived neighborhood safety/
crime. (B) Analyses are presented using beta values extracted for voxels in the bilateral amygdala and hippocampus and surface vertices in 3 cortical networks:
the frontoparietal, dorsal, and ventral attention networks. ADI, area deprivation index; CBCL, Child Behavior Checklist; CRPBI, Child’s Report of Parent
Behavior Inventory; FES, Family Environment Scale; NCY, Neighborhood Crime, Youth report; NSC, Neighborhood Safety Protocol, Caregiver report.

participants’ EN-back task or CBCL scores (20,21,26). Re-
gressions were then applied to predict scores from the brain
data (i.e., voxelwise or embedding) of held-out participants and
scored as the partial Spearman’s correlation (p) between pre-
dicted and true scores for each fold of held-out participants. p
values were then averaged across folds. In our analyses, we
compared the partial Spearman’s p of multiple linear regres-

(23,26). Voxelwise data dimensionality is provided in Table S2
in Supplement 1.

Prediction of Emotional and Behavior Problems and
Task Performance From Brain Data

Cross-sectional analyses used participants’ brain data at

baseline to predict behavioral scores at baseline (n = 4732).
Longitudinal analyses used brain data at baseline to predict
scores at the 2-year follow-up, controlling for the participant’s
score at baseline (n = 2371). For each cross-validation fold,
multiple linear regressions were trained on 95% of participants’
brain data (either voxelwise or embedding) to predict

466

sion models trained on voxelwise data, PHATE, and E-PHATE
embeddings. Covariates included scanner serial number for
cross-sectional and longitudinal analyses and participants’
baseline scores for the behavioral measure being predicted in
longitudinal analyses. The performance of regression models
trained on different data representations (e.g., voxelwise vs.
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E-PHATE) was compared across representations using pair-
wise permutation tests (10,000 iterations) and Bonferroni
correction; comparisons across representations refererence
these p values. Further details about regression models and
statistical testing are included in Supplemental Methods S6
and S10 in Supplement 1, respectively. Analysis pipeline is
available at: https://github.com/ericabusch/manifold_abcd_
psychopathology_bpcnni. Stand-alone software package for
E-PHATE is available at: https://github.com/ericabusch/
EPHATE.

RESULTS

PHATE Strengthened Associations Between Brain
Activation and EN-Back Performance

As a proof of concept to confirm whether manifold learning
could improve representation of cognitively relevant brain ac-
tivity, we first tested the association between standard PHATE
embeddings and participants’ EN-back task scores. Voxelwise
2-back versus 0-back activation showed moderate associa-
tions with EN-back performance (¢ < 0.20) in all regions
(Table 2). PHATE embeddings of 2-back versus 0-back acti-
vation were significantly related to EN-back task performance
in all regions (Figure 2 and Table 2; Supplemental Data 2 in
Supplement 3) with a large effect size (¢ > 0.20). The greatest
effects were observed in the frontoparietal and attention net-
works (¢ > 0.52), which were more than double the effect sizes
(p) for regression models trained on voxelwise data. Given
previous research linking frontoparietal and attention networks
with higher-order cognitive abilities and working memory
(35,40,41), these results demonstrate that PHATE optimized
the sensitivity of the fMRI data for detecting brain activation
related to cognitive performance.

Consistent with prior research (35), none of the voxelwise
data for the emotion versus neutral face contrast significantly
related to EN-back performance. In contrast, PHATE embed-
dings of emotion versus neutral activation showed moderate
associations with EN-back performance (¢ > 0.14 in fronto-
parietal and attention networks). Therefore, the PHATE
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embedding enhanced access to brain activation related to
emotion processing during the EN-back task.

E-PHATE Strengthened Cross-Sectional
Associations With Emotional and Behavioral
Problems

We tested whether E-PHATE strengthened associations be-
tween brain function and CBCL scores (30) by comparing the
partial Spearman’s ps of multiple linear regression models
trained on voxelwise data, PHATE, and E-PHATE embeddings.
Voxelwise data from the 2-back versus 0-back working
memory contrast showed a small effect that was nonetheless
statistically significant: a relationship to CBCL total problems
only in the hippocampus (¢ = 0.032, 95% CI, 0.005-0.063)
(Table 3). PHATE embeddings of the 2-back versus the O-
back contrast were significantly related to total problems in
all regions of interest (ROIs) with small-to-moderate effect
sizes, but only outperformed voxelwise data significantly in the
frontoparietal network. E-PHATE reflected stronger associa-
tions between brain activation and total problems compared
with both the voxelwise data and PHATE embeddings for the
2-back versus the 0-back contrast for every region (all cor-
rected ps < .01, except frontoparietal E-PHATE vs. PHATE
p < .05). The magnitude of the associations between E-PHATE
embeddings and overall emotional and behavioral problems
were similarly moderate-to-high (¢ = 0.143-0.152) across all
regions (Figure 3A and Table 3; Supplemental Data 2 in
Supplement 3).

Replicating previous research that showed null associa-
tions between emotion processing activation and emotional
and behavioral problems (42), voxelwise activity from the
emotion versus neutral contrast was not significantly related
to individual differences in CBCL total problems in any ROI.
PHATE embeddings of the emotion versus neutral contrast
performed similarly to the voxel data in terms of the strength
of its relationship with total problems (all ps < 0.035 for voxel
and PHATE; small effect size). E-PHATE significantly
strengthened this relationship compared with the voxelwise
data and PHATE embeddings in the emotion versus neutral
contrasts for all regions (all corrected ps < .01, except

Table 2. Results Showing Associations Between Brain Activation Embeddings and Emotional n-Back Task Performance

Partial

Spearman’s p

Partial

95% ClI Spearman’s p 95% ClI

Embedding Type ROI 2-Back vs. 0-Back Emotion vs. Neutral Face

Voxel Amygdala 0.164 0.122 to 0.193 0.003 —0.030 to 0.029
Hippocampus 0.154 0.132 to 0.177 0.000 —0.030 to 0.029
Dorsal attention network 0.157 0.130 to 0.183 0.000 —0.035 to 0.029
Ventral attention network 0.199 0.176 to 0.220 0.006 —0.018 to 0.027
Frontoparietal network 0.176 0.152 to 0.196 —0.008 —0.031 to 0.019

PHATE Amygdala 0.217 0.189 to 0.240 0.113 0.086 to 0.143
Hippocampus 0.259 0.232 to 0.285 0.114 0.090 to 0.138
Dorsal attention network 0.540 0.518 to 0.566 0.141 0.118 to 0.168
Ventral attention network 0.523 0.507 to 0.539 0.150 0.128 to 0.168
Frontoparietal network 0.534 0.512 to 0.556 0.137 0.111 to 0.160

RO, region of interest.
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Figure 2. Associations of brain data with in-scanner emotional n-back (EN-back) task performance. Multiple linear regression was used to measure the
association between brain data representations and EN-back task performance and scored as the partial Spearman correlation (0) between true and
regression-predicted performance for held-out participants (20 cross-validation folds). Bars represent the average P across cross-validation test folds. Pairwise
permutation tests were used to compute p values for the difference in p for each cross-validation fold across representations of brain data (i.e., voxel-resolution
data in white and corresponding PHATE embedding filled in). Left bar set in each graph represents the 2-back vs. 0-back contrast; right bar set in each graph
represents the emotion vs. neutral contrast. Error bars represent the 95% CI of the mean p across 20 cross-validation folds. **p < .01, **p < .001.

amygdala E-PHATE vs. voxel p < .05). The magnitude of E-
PHATE’s performance with emotion versus neutral contrast
was comparably strong to E-PHATE’s performance with the
2-back versus 0-back contrast, with moderate-to-large effect
sizes (all ps > 0.12) (Figure 3A and Table 2; Supplemental
Data 2 in Supplement 3).

CBCL total problems can be broken into 2 main broadband
scales: externalizing and internalizing problems. To examine
whether the significant relationships between E-PHATE em-
beddings and total problems were driven specifically by as-
sociations with externalizing or internalizing problems, we
repeated the analyses above to predict t scores for each scale
independently. E-PHATE embeddings were more strongly
related to externalizing problems than the voxelwise data or
PHATE embeddings, across both task contrasts in all regions
(pairwise comparison between E-PHATE and PHATE and E-
PHATE and voxel for each region; all corrected ps < .01,
except frontoparietal E-PHATE vs. PHATE p < .05) (Figure 3B
and Table 3). As with the total problem score, E-PHATE’s
relationship to externalizing problems showed moderate-to-
large effect sizes across regions and contrasts. The
magnitude of associations with internalizing problems
(p =0.076-0.111 across regions and contrasts) was moderate
and lower than the larger effect sizes observed for external-
izing problems but still significant (95% Cls did not contain 0)
(Table 3). This was not the case for voxelwise or most of the
PHATE embeddings, except for the PHATE embedding of 2-
back versus 0-back activation in the ventral attention
network, which showed a small but significant effect (0 =
0.056, 95% ClI, 0.034-0.089) (Figure 3C). Supplemental ana-
lyses (Figure S2 in Supplement 1 and Supplemental Data 1 in
Supplement 2) replicated this pattern across the externalizing
and internalizing subscale symptoms: E-PHATE embeddings
were significantly associated with all subscales with
moderate-to-large effect sizes, with the strength of the as-
sociation depending upon the subscale, fMRI contrast,
and ROI.

Benchmarking and robustness analyses showed that 1)
when comparing E-PHATE to other dimensionality reduction
methods, E-PHATE embeddings significantly outperformed
PCA (43,44) and UMAP (45,46) (Supplemental Methods S7
and Figure S3 in Supplement 1); 2) the increased

sensitivity of E-PHATE was attributable to added information
specifically about the environment as opposed to an in-
crease in the quantity of data about each participant
(E-PHATE control) (Supplemental Methods S8 and Figure S4
in Supplement 1); 3) the increased sensitivity of E-PHATE
was attributable to the nonlinear combination of brain and
environment (PHATE + environment); and 4) E-PHATE
matrices built solely based on neighborhood disadvantage
(area deprivation index) or family conflict (47,48) improved
associations compared with no environmental information,
but neither afforded as great of an improvement as the
5-feature environment view (Supplemental Methods S9 and
Figure S4 in Supplement 1).

E-PHATE Improved Longitudinal Prediction of
Emotional and Behavioral Problems in the
Frontoparietal Network

To evaluate whether the signals highlighted by E-PHATE could
enhance our ability to detect brain activation relevant for future
emotional and behavioral problems, we asked whether the
same embedding of brain and environmental factors at base-
line (ages 9-10) could predict emotional and behavioral prob-
lems 2 years later (at ages 11-12). Using a subset of the
original participants (n = 2,371 with complete data at the 2-year
follow-up), we embedded baseline voxelwise brain data and
environment measures with E-PHATE. Then, we trained mul-
tiple linear regressions to predict CBCL total, externalizing, and
internalizing problems at the 2-year follow-up (controlling for
the corresponding baseline CBCL score and scanner serial
number during test).

The prediction of the CBCL total problems score was only
significant (although the effect size was small) from E-PHATE
embeddings of ventral attention network emotion versus neutral
face activation (¢ = 0.044, 95% CI, 0.011-0.085); these problems
were not predicted by either voxel or PHATE (Figure 4 and Table 3;
Supplemental Data 1 in Supplement 2). Externalizing problems
were significantly predicted by E-PHATE embeddings of amyg-
dala activation in the 2-back versus 0-back contrast (moderate
effect size; p = 0.060, 95% CI, 0.023-0.096) and by E-PHATE
embeddings of hippocampus and ventral attention network
emotion versus neutral face activation (moderate effect sizes;
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Table 3. Results Showing Associations Between Brain Activation Embeddings and Emotional and Behavioral Problems

Baseline 2 Years
Embedding Type ROI Partial Spearman’s p 95% ClI Partial Spearman’s p 95% ClI
CBCL Total Problems
2-Back vs. 0-Back 2-Back vs. 0-Back

Voxel Amygdala 0.009 —0.025 to 0.042 -0.013 —0.052 to 0.025
Hippocampus 0.032 0.005 to 0.063 —-0.025 —0.061 to 0.016
Dorsal attention network 0.027 —0.002 to 0.056 0.039 —0.004 to 0.078
Ventral attention network —0.025 —0.051 to —0.001 0.019 —0.02 to 0.056
Frontoparietal network -0.012 —0.043 to 0.012 —0.036 —0.074 to 0.005

PHATE Amygdala 0.036 0.016 to 0.057 —-0.007 —0.049 to 0.042
Hippocampus 0.051 0.016 to 0.088 0.024 —0.027 to 0.070
Dorsal attention network 0.056 0.031 to 0.081 0.005 —0.033 to 0.045
Ventral attention network 0.069 0.044 to 0.104 —0.006 —0.05 to 0.036
Frontoparietal network 0.059 0.028 to 0.091 -0.016 —0.059 to 0.023

E-PHATE Amygdala 0.145 0.128 to 0.163 0.031 —0.007 to 0.07
Hippocampus 0.152 0.130 to 0.174 0.034 —0.009 to 0.084
Dorsal attention network 0.143 0.120 to 0.178 0.009 —0.035 to 0.054
Ventral attention network 0.151 0.126 to 0.181 0.022 0.02 to 0.064
Frontoparietal network 0.144 0.120 to 0.178 0.043 0.001 to 0.089

Emotion vs. Neutral Face Emotion vs. Neutral Face

Voxel Amygdala 0.032 —0.007 to 0.043 —0.024 —0.06 to 0.011
Hippocampus 0.006 —0.029 to 0.034 0.02 —0.017 to 0.056
Dorsal attention network -0.017 0.000 to 0.042 —0.052 —0.092 to —0.013
Ventral attention network —0.009 —0.033 to 0.006 0.034 —0.013 to 0.078
Frontoparietal network -0.016 —0.026 to 0.032 -0.016 —0.061 to 0.017

PHATE Amygdala 0.017 —0.006 to 0.043 —-0.007 —0.047 to 0.032
Hippocampus —-0.004 —0.03 to 0.028 —0.042 —0.083 to 0.003
Dorsal attention network 0.017 —0.002 to 0.037 —0.001 —0.052 to 0.047
Ventral attention network 0.019 —0.015 to 0.051 0.002 —0.033 to 0.05
Frontoparietal network -0.013 —0.035 to 0.009 —0.031 —0.069 to 0.005

E-PHATE Amygdala 0.126 0.101 to 0.151 0.039 —0.011 to 0.089
Hippocampus 0.149 0.114 t0 0.183 0.018 —0.023 to 0.065
Dorsal attention network 0.124 0.099 to 0.152 0.029 —0.006 to 0.071
Ventral attention network 0.141 0.111 to 0.17 0.044 0.011 to 0.085
Frontoparietal network 0.134 0.111 to 0.17 0.032 —0.01 to 0.077

CBCL Externalizing Problems

2-Back vs. 0-Back 2-Back vs. 0-Back

Voxel Amygdala 0.002 —0.026 to 0.026 —0.023 —0.063 to —0.013
Hippocampus 0.012 —0.015 to 0.036 0.005 —0.049 to 0.052
Dorsal attention network 0.028 0.001 to 0.062 0.018 —0.023 to 0.053
Ventral attention network —0.039 —0.071 to —0.005 0.009 —0.04 to 0.056
Frontoparietal network —0.025 —0.051 to 0.003 -0.05 —0.080 to —0.017

PHATE Amygdala 0.001 —0.017 to 0.024 0.015 —0.025 to 0.060
Hippocampus 0.039 0.005 to 0.074 0.011 —0.025 to 0.048
Dorsal attention network 0.031 0.010 to 0.051 —0.016 —0.051 to 0.019
Ventral attention network 0.051 0.026 to 0.073 —0.003 —0.047 to 0.048
Frontoparietal network 0.064 0.039 to 0.099 —0.057 —0.093 to —0.021

E-PHATE Amygdala 0.121 0.094 to 0.145 0.060 0.023 to 0.096
Hippocampus 0.141 0.118 to 0.166 0.041 —0.006 to 0.079
Dorsal attention network 0.142 0.117 to 0.173 0.034 —0.01 to 0.074
Ventral attention network 0.144 0.121 to 0.172 0.024 —0.018 to 0.059
Frontoparietal network 0.134 0.107 to 0.175 0.035 —0.008 to 0.076
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Table 3. Continued

Baseline 2 Years
Embedding Type ROI Partial Spearman’s p 95% ClI Partial Spearman’s p 95% ClI
Emotion vs. Neutral Face Emotion vs. Neutral Face

Voxel Amygdala 0.006 —0.026 to 0.043 0.010 —0.028 to 0.049
Hippocampus —0.025 —0.059 to 0.006 0.008 —0.032 to 0.050
Dorsal attention network -0.012 —0.036 to 0.011 —0.028 —0.074 to 0.016
Ventral attention network —0.006 —0.031 to 0.020 0.015 —0.029 to 0.056
Frontoparietal network —0.008 —0.032 to 0.015 0.002 —0.045 to 0.051

PHATE Amygdala 0.014 —0.009 to 0.037 —0.009 —0.043 to 0.028
Hippocampus 0.010 —0.014 to 0.032 0.001 —0.038 to 0.038
Dorsal attention network 0.043 0.022 to 0.066 0.003 —0.043 to 0.05
Ventral attention network 0.048 0.014 to 0.081 0.035 —0.011 to 0.077
Frontoparietal network -0.013 —0.034 to 0.004 —0.024 —0.059 to 0.014

E-PHATE Amygdala 0.131 0.108 to 0.153 0.044 —0.002 to 0.085
Hippocampus 0.134 0.098 to 0.169 0.053 0.006 to 0.096
Dorsal attention network 0.131 0.105 to 0.159 0.022 —0.019 to 0.062
Ventral attention network 0.142 0.115t0 0.174 0.053 0.012 to 0.090
Frontoparietal network 0.139 0.114 t0 0.174 0.031 —0.015 to 0.079

CBCL Internalizing Problems

2-Back vs. 0-Back 2-Back vs. 0-Back

Voxel Amygdala 0.007 —0.025 to 0.038 0.006 —0.038 to 0.048
Hippocampus 0.014 —0.026 to 0.040 -0.010 —0.052 to 0.032
Dorsal attention network —0.001 —0.027 to 0.028 0.010 —0.033 to —0.001
Ventral attention network -0.019 —0.046 to 0.004 0.007 —0.051 to 0.044
Frontoparietal network —0.002 —0.032 to 0.026 —0.003 —0.030 to 0.039

PHATE Amygdala 0.017 —0.002 to 0.039 -0.017 —0.050 to 0.022
Hippocampus 0.022 —0.016 to 0.063 0.016 —0.023 to 0.057
Dorsal attention network 0.022 —0.012 to 0.051 —-0.034 —0.071 to 0.012
Ventral attention network 0.056 0.034 to 0.089 0.031 —0.006 to 0.074
Frontoparietal network 0.007 —0.012 to 0.031 0.002 —0.044 to 0.041

E-PHATE Amygdala 0.111 0.090 to 0.133 0.033 —0.005 to 0.074
Hippocampus 0.105 0.087 to 0.125 0.051 0.01 to 0.10
Dorsal attention network 0.093 0.073 to 0.133 0.044 0.009 to 0.09
Ventral attention network 0.104 0.079 to 0.137 0.034 —0.01 to 0.078
Frontoparietal network 0.107 0.086 to 0.137 0.058 0.022 to 0.104

Emotion vs. Neutral Face Emotion vs. Neutral Face

Voxel Amygdala 0.013 —0.018 to 0.047 -0.013 —0.053 to 0.023
Hippocampus 0.004 —0.019 to 0.029 —0.006 —0.041 to 0.03
Dorsal attention network —0.018 —0.032 to —0.002 —0.016 —0.063 to 0.021
Ventral attention network 0.002 —0.022 to 0.033 0.024 —0.018 to 0.069
Frontoparietal network —-0.014 —0.031 to 0.008 —0.051 —0.084 to —0.022

PHATE Amygdala —0.011 —0.036 to 0.016 —-0.010 —0.054 to 0.034
Hippocampus —-0.019 —0.047 to 0.012 —0.004 —0.037 to 0.028
Dorsal attention network —0.008 —0.024 to 0.017 —0.035 —0.076 to 0.005
Ventral attention network —0.033 —0.064 to —0.005 0.019 —0.023 to 0.074
Frontoparietal network -0.013 —0.039 to 0.019 —0.036 —0.07 to —0.003

E-PHATE Amygdala 0.091 0.062 to 0.118 0.062 0.019 to 0.11
Hippocampus 0.110 0.079 to 0.139 0.029 —0.017 to 0.076
Dorsal attention network 0.076 0.052 to 0.107 0.014 —0.027 to 0.067
Ventral attention network 0.100 0.074 to 0.125 0.054 0.014 to 0.097
Frontoparietal network 0.091 0.062 to 0.124 0.047 0.004 to 0.092

CBCL, Child Behavior Checklist; E-PHATE, exogenous PHATE; ROI, region of interest.
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hippocampus: p = 0.053, 95% CI, 0.006-0.096; ventral attention
network: p = 0.053, 95% Cl, 0.012-0.090). Internalizing problems
were more strongly predicted longitudinally than externalizing
or total problems, with small-to-moderate effect sizes, again only
using E-PHATE embeddings (significant in the amygdala, fronto-
parietal, and attention networks for the emotion vs. neutral face
contrast and in the hippocampus, frontoparietal, and dorsal
attention networks for the 2-back vs. 0-back contrast) (Figure 4A
and Supplemental Data 2 in Supplement 3). Longitudinal pre-
dictions were more focused on specific contrasts and regions
than cross-sectional associations, possibly suggesting more
nuanced, pointed mechanisms related to distinct problems
over time.

DISCUSSION

Decades of theories and empirical research indicate that
adolescent neurobiology and environmental context interact to
shape the development of emotional and behavioral problems.
However, prior work has struggled to capture the complexity of
this interplay. Here, we used nonlinear manifold learning to 1)
test whether we could improve the basic associations between
adolescent neurobiology and individual differences in cogni-
tion/mental health (21,49) and 2) model brain-environment

Biological
Psychiatry:
CNNI

multidimensionality and relation to mental health outcomes.
Across a large, sociodemographically diverse sample of U.S.
adolescents, PHATE embeddings enhanced the association of
fMRI task activation in multiple brain regions and networks with
individual differences in cognitive processing. Yet, standard
PHATE embeddings did not greatly improve associations with
emotional and behavioral problems. Using E-PHATE, we vastly
improved the detection and prediction of emotional and
behavioral problems. Overall, our results demonstrate that
manifold learning techniques are well suited to the complexity
of multimodal developmental data and have great potential to
enhance research on the neurobiology of emotional and
behavioral problems in adolescents.

A major goal of developmental science is to characterize the
interplay between adolescents and their broader environments
to identify early markers of risk and novel targets for inter-
vention (3,4,14,15,28,29). This work offers a substantial
methodological advance toward that goal through the devel-
opment of E-PHATE. E-PHATE offers researchers a data-
driven method for capturing the nonlinear interactions be-
tween biological and environmental factors, in contrast with
prior univariate approaches that have modeled these in-
teractions as a simple product of 2 variables (50) or multivariate
approaches that have been limited in combining brain and

interactions in a way that reflects their nonlinear environment and have focused more on optimizing the brain
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Figure 3. Cross-sectional associations of brain data with mental health problems. Multiple linear regression was used to measure the association between
brain data representations and Child Behavior Checklist (CBCL) problem scores and scored as the partial Spearman correlation (0) between true and
regression-predicted CBCL scores for held-out participants’ data (20 cross-validation folds). Bars represent the average p across the 20-cross-validation test
folds. Pairwise permutation tests were used to compute p values for the difference in p for each cross-validation fold across representations of brain data (i.e.,
voxel, PHATE, exogenous PHATE [E-PHATE]). Both CBCL scores and brain/environmental data were collected at baseline. The left bar set in each graph
represents the 2-back vs. 0-back contrast; the right bar set in each graph represents the emotion vs. neutral contrast. (A) Total problems, (B) externalizing
problems, and (C) internalizing problems. Error bars represent the 95% CI of the mean p across 20 cross-validation folds. ~p < .1, *p < .05, *p < .01.
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Figure 4. Longitudinal prediction of emotional and behavioral problems. Multiple linear regression analysis was used to predict Child Behavior Checklist
(CBCL) problem scores at the 2-year follow-up from baseline brain/environmental data representations and scored as the partial Spearman correlation (p)
between true and regression-predicted CBCL scores for held-out participants’ data (20 cross-validation folds). Bars represent the average p across test folds.
Pairwise permutation tests were used to compute p values for the difference in p across representations of brain data (i.e., voxel, PHATE, exogenous PHATE
[E-PHATE]). The left bar set in each graph represents the 2-back vs. 0-back contrast; the right bar set in each graph represents the emotion vs. neutral contrast.
(A) Total problems, (B) externalizing problems, and (C) internalizing problems. Error bars represent the 95% CI of the mean p across 20 cross-validation folds.

~p <.1,%p < .05, *p < .01.

data for prediction (18,19). By incorporating exogenous infor-
mation about adolescents’ neighborhoods and families as
essential data that provide structure to the brain activation
manifold, E-PHATE improved associations between brain
function and emotional and behavioral problems. Previous
studies have questioned the reliability of developmental, task-
based fMRI (49) and of empirical support linking specific ROIs
(e.g., amygdala) to emotional and behavioral problems in
youths (51-53); however, E-PHATE highlighted signals relevant
for understanding emotional and behavioral problems in every
ROI and network that we examined across both contrasts.
These results demonstrate that efforts to elucidate relation-
ships between adolescent brain function and emotional and
behavioral problems may be stifled if researchers fail to
consider the broader context in which the brain develops
(29,54,55).

Beyond the applications in developmental neuroscience
and clinical psychology outlined above, E-PHATE shows
promise for a variety of big-data challenges. E-PHATE ad-
dresses a key limitation of many manifold learning methods
(e.g., PCA, UMAP, or PHATE), which identify latent structure in
a purely unsupervised fashion. In other words, the algorithms
do not integrate or evaluate the interplay of multiple mea-
surement types into 1 latent structure. Other methods (e.g.,
partial least squares regression, PCA ridge regression, or
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canonical correlation analysis) used to study brain-behavior
associations from high-dimensional data do so by refining
latent components with the direct goal of maximizing the
prediction of a certain variable (e.g., CBCL scores) and then
testing those components on out-of-sample data (17-19). In
contrast, E-PHATE combines different measurements of the
same samples into the manifold calculation but does not refine
its representation with any specific goal of downstream pre-
diction; thus, it maintains both the benefits of unsupervised
manifold geometry discovery and hypothesized structure.
The current work should be viewed in light of a few limita-
tions. First, we focused on specific regions and networks that
have previously been related to memory- and emotion pro-
cessing and mental health (5,6,14,27,35,40,41). However,
investigating other brain areas or whole-brain approaches may
be relevant for understanding task performance and emotional
and behavioral problems. Second, manifold learning algo-
rithms are not able to discern the direction or specific patterns
of brain activation that contribute to associations with task
performance and emotional and behavioral problems.
Nonlinear manifolds are also challenging to faithfully extend to
untrained samples (24,56,57), which is an important future di-
rection needed to increase the impact of this work. Third, while
E-PHATE could predict emotional and behavioral problems 2
years later, results from the current study are correlational and
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cannot be used to infer causation. Considering research that
shows bidirectional relationships between the environment
and emotional and behavioral problems, future studies should
incorporate manifold learning within other longitudinal designs.
Fourth, the results in the current article only reflect a snapshot
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