
Research briefing

Revealing 
trajectories 
of the mind 
via non-linear 
manifolds of 
brain activity

This work involved the design of 
a multi-view manifold learning 
algorithm that capitalizes 
on various types of structure 
in high-dimensional time-
series data to model dynamic 
signals in low dimensions. The 
resulting embeddings of human 
functional brain imaging data 
unveil trajectories through brain 
states that predict cognitive 
processing during diverse 
experimental tasks.

The mission

Studying the brain in action is a powerful 
way to address age-old questions about the 
healthy human mind. Although cutting-edge 
technologies for measuring brain activity, 
like functional magnetic resonance imaging 
(fMRI), create computationally compelling 
data for understanding the dynamics of 
brain function, these data are riddled with 
spatiotemporal noise. This noise originates 
from both the method of measurement, as 
fMRI captures an indirect, vascular re-
sponse that is delayed several seconds from 
neuronal activity, and the way that the brain 
represents information in spatially dif-
fuse, redundant population codes (a way of 
representing information about a stimulus 
by the simultaneous, correlated activity of a 
large set of stimulus-responsive neurons)1. 
Together, these properties of brain imaging 
data indicate that brain activity encodes 
diverse states into a small number of activity 
patterns; that is, they could be captured as 
trajectories along a low-dimensional mani-
fold. Furthermore, higher-order cognitive 
processes such as memory and narrative 
comprehension are represented in patterns 
of brain activation that unfurl over multiple 
timescales. The complex interactions be-
tween attributes of brain data and the ways 
that the brain encodes information highlight 
the need for an algorithm that jointly consid-
ers spatial and temporal signal structures  
to uncover the latent space of dynamic  
cognitive processes.

The solution

We designed a new manifold learning 
algorithm, called temporal potential of 
heat diffusion for affinity-based transition 
embedding (T-PHATE), for analyzing high-
dimensional data that represent temporally 
dynamic processes. The T-PHATE algorithm 
learns two ‘views’ into the data: one view 
models the data’s time-varying proper-
ties, and the other view learns the data’s 
geometry via the PHATE manifold learning 
method2. These views are then combined  
to learn a manifold that represents both 
dynamic and geometric data properties  
(Fig. 1). We test this approach using data 
from three brain imaging (fMRI) experi-
ments. Two experiments measured the brain 
during naturalistic tasks (as participants 
watched standard full-length movies)3, and 
the other experiment had participants view 
static, random images4. These data capture 
the brain during complex cognitive tasks 
in which time plays an important role in un-
derstanding the movie, as well as a simpler 
task in which time does not interact with 
information processing.

We compared fMRI brain activity data 
embedded with T-PHATE with data embed-
ded using several state-of-the-art dimen-
sionality reduction algorithms, such as 
UMAP (uniform manifold approximation 
and projection for dimension reduction) 
and T-SNE (t-distributed stochastic neigh-
bor embedding), as benchmarks against 
which to compare T-PHATE’s performance. 
These embeddings were computed indi-
vidually for each participant. Embeddings 
of fMRI activity with T-PHATE visually and 
quantitatively showed the clearest trajecto-
ries through the latent space5. The dynamic 
structure captured by T-PHATE generalized 
across study participants who were watch-
ing the same movie, even though T-PHATE 
embeddings were learned for each brain 
independently. Furthermore, the T-PHATE 
dynamics were related to how people 
consciously identify dynamics behavio-
rally during the tasks involving a continu-
ous narrative stimulus, such as watching 
movies. In a separate task with no inherent 
dynamics, where participants viewed static 
images in no specific order, T-PHATE still 
revealed task-related structure by cluster-
ing the brain states related to certain object 
categories in proximal parts of the latent 
space. This shows the method’s general-
purpose ability to denoise high-dimensional 
time-series data.

Future directions

As big data become more ubiquitous, meth-
ods for denoising and uncovering latent 
structure in such data are increasingly valu-
able. T-PHATE has promising applications in 
other kinds of high-throughput time-series 
data, such as longitudinal health data, devel-
opmental trajectories, climate change data, 
economic trends, and language evolution.

At present, our results only cover fMRI 
data, which have known temporal properties 
that enable autocorrelation modeling  
(Fig. 1). We hope to extend the applications 
of T-PHATE to other forms of time-series 
data, which might require different ap-
proaches to modeling time in the temporal 
view of T-PHATE.

Given the noise inherent in brain imaging 
data at the single-person level, our approach 
holds clear promise for investigating the 
signatures of cognitive processes within 
individual brains. Furthermore, the individ-
ual-tailored nature of this approach will aid 
in the development of important applica-
tions for brain–computer interfaces. We are 
excited to expand along these avenues in  
the future.

Erica L. Busch & Smita Krishnaswamy
Yale University, New Haven, CT, USA

This is a summary of: 
Busch, E. L. et al. Multi-view manifold learn-
ing of human brain-state trajectories. Nat. 
Comput. Sci. https://doi.org/10.1038/s43588-
023-00419-0 (2023).

Publisher’s note 
Springer Nature remains neutral with regard 
to jurisdictional claims in published maps 
and institutional affiliations.

Published online: 27 March 2023

 Check for updates

Nature Computational Science | Volume 3 | March 2023 | 192–193 192

https://doi.org/10.1038/s43588-023-00419-0
https://doi.org/10.1038/s43588-023-00419-0
http://crossmark.crossref.org/dialog/?doi=10.1038/s43588-023-00423-4&domain=pdf
http://www.nature.com/natcomputsci


References

1.	 Turk-Browne, N. B. Functional interactions 
as big data in the human brain. Science 
342, 580–584 (2013).  
A review article that presents the 
properties and complexity of functional 
neuroimaging data.

2.	 Moon, K. R. et al. Visualizing structure and 
transitions in high-dimensional biological 
data. Nat. Biotechnol. 37, 1482–1492 (2019).  
This paper presents the PHATE algorithm, 
which our study extends.

3.	 Chen, J. et al. Shared memories reveal 
shared structure in neural activity across 
individuals. Nat. Neurosci. 20, 115–125 
(2017).  
This paper describes one of the data sets 
used in our study.

4.	 Hanke, M. et al. A studyforrest extension, 
simultaneous fMRI and eye gaze recording 
during prolonged natural stimulation.  
Sci. Data 3, 160092 (2016).  
This paper describes one of the data sets 
used in our study.

5.	 Baldassano, C. et al. Discovering event 
structure in continuous narrative 
perception and memory. Neuron 95, 
709–721 (2017).  
This paper presents the event 
segmentation framework for modeling 
neural dynamics.

From the editor

“The authors propose an approach for 
reducing the dimensionality of fMRI data 
in naturalistic paradigms. The work stood 
out to me since the method accounts for 
temporal autocorrelation to improve data 
visualization, classification, and event 
segmentation of the data, which is an 
improvement over existing methods in the 
field.” Ananya Rastogi, Associate Editor, 
Nature Computational Science.

Behind the paper

This project began with our interest 
in developing low-dimensional 
representations of brain activity for 
applications in non-invasive brain–
computer interfaces. The approaches 
we initially tried were hampered either 
by the noise inherent in single-person 
fMRI data or by poorly modeled dynamic 
information. Our first few attempts at the 
dual-view manifold learning approach 
used a fixed-width temporal view, which 
essentially applied smoothing uniformly 

over a fixed number of time points. This 
approach outperformed a single-view 
algorithm but only for some brain regions. 
We finally settled on an approach that 
learned the width of the temporal view 
from the data itself. This approach is far 
more robust than our previous attempts 
and enables T-PHATE to adjust flexibly 
to the temporal integrative properties of 
different brain regions, different temporal 
sampling rates, and even different brain 
imaging modalities. E.L.B.

Expert opinion

“This work presents an interesting 
approach for dimensional reduction in 
noisy spatiotemporal biological data. 
The researchers test their scheme on 
both synthetic data and labeled real fMRI 
data, which allows for an evaluation of 

the method performance. In relation to a 
series of benchmarks, the authors' method 
far outperforms other methods such as 
principal component analysis (PCA) and 
UMAP.” Vahid Shahrezaei, Imperial College 
London, London, UK.
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Fig. 1 | Multi-view manifold learning approach with T-PHATE. Voxel-wise fMRI activity data are extracted 
from a brain region of interest and used to learn two views of the data. The PHATE view captures the 
manifold geometry of the data, and the autocorrelation view learns the temporal dynamics of the data via 
an autocorrelation function, which computes the correlation coefficient of each voxel’s activity against 
lagged versions of itself. These views are combined into a single T-PHATE diffusion operator, which is then 
embedded into low dimensions. This latent representation visually highlights trajectories through brain 
states as they emerge over time. © 2023, Busch, E. L. et al.
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