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Abstract—Neuroscience employs diverse neuroimaging tech-
niques, each offering distinct insights into brain activity, from
electrophysiological recordings such as EEG, which have high
temporal resolution, to hemodynamic modalities such as fMRI,
which have increased spatial precision. However, integrating these
heterogeneous data sources remains a challenge, which limits a
comprehensive understanding of brain function. We present the
Spatiotemporal Alignment of Multimodal Brain Activity (SAMBA)
framework, which bridges the spatial and temporal resolution
gaps across modalities by learning a unified latent space free
of modality-specific biases. SAMBA introduces a novel attention-
based wavelet decomposition for spectral filtering of electrophysi-
ological recordings, graph attention networks to model functional
connectivity between functional brain units, and recurrent layers
to capture temporal autocorrelations in brain signal. We show
that the training of SAMBA, aside from achieving translation, also
learns a rich representation of brain information processing. We
showcase this classify external stimuli driving brain activity from
the representation learned in hidden layers of SAMBA, paving the
way for broad downstream applications in neuroscience research
and clinical contexts.

I. INTRODUCTION

Non-invasive techniques such as electroencephalography
(EEG) and magnetoencephalography (MEG) provide high tem-
poral resolution, capturing the rapid dynamics of neural activity.
In contrast, hemodynamic methods, such as functional magnetic
resonance imaging (fMRI), offer rich spatial resolution [23]. As
neuroscience advances towards more sophisticated models of cog-
nition, integrating these diverse data types becomes increasingly
critical [3]. Combining the complementary strengths of these
modalities could offer a more comprehensive understanding of
brain function, but this remains a challenging task.

While substantial progress has been made in utilizing multi-
modal data consisting of image stimuli and brain activity pairs
– particularly with Generative Adversarial Networks (GANs),
transformers, and diffusion models to reconstruct images from
brain activity [6, 10, 12, 13, 16–19] – the same is not true
for the integration of multiple brain imaging modalities. Most
of the work in this area has focused on leveraging information
from EEG to enhance the fidelity of fMRI signals [1, 5, 7, 15].
These efforts, while valuable in improving fMRI’s localization
and signal-to-noise ratio with temporally rich EEG signals, often
fall short of addressing the more complex task of multimodal
fusion and do not address the complexities of spatiotemporal
upsampling and downsampling between modalities.

To bridge this gap, we propose a novel multi-modal neural
network framework, Spatiotemporal Alignment of Multimodal
Brain Activity (SAMBA), designed to generalize the translation

between electrophysiological and hemodynamic signals. SAMBA
addresses both spatial and temporal disparities through graph at-
tention and wavelet-based modules. Our objectives are threefold:
(1) to create a unified latent space that captures spatiotemporal
dynamics without modality-specific biases, enabling its applica-
tion across a broad set of downstream tasks, such as brain state
classification, cognitive assessment, and diagnosis of neurological
disorders; (2) to develop data-driven models of hemodynamic
response and functional connectivity in the brain; and (3) to com-
bine smaller unimodal datasets into larger multimodal cohorts,
laying the groundwork for training foundational models. SAMBA
incorporates (1) temporal upsampling and downsampling mod-
ules based on learnable hemodynamic response functions (HRFs)
and attention-based wavelet decomposition for spectral filtering;
(2) spatial upsampling and downsampling modules powered by
graph attention networks (GATs) to model functional connectivity
across brain regions; and (3) recurrent layers to capture autocor-
relations in the temporal domain.

We demonstrate the efficacy of SAMBA in several key tasks.
First, the framework enables precise translation between electro-
physiological and hemodynamic modalities, allowing for accurate
cross-modal mapping. We also perform ablation studies to con-
firm the essential roles of all SAMBA components. Next, we
show that SAMBA’s unified latent representations can accurately
classify scenes in a movie shown to the subjects during data ac-
quisition, demonstrating that the translation task allows SAMBA
to capture rich representations of cognitive activity. Finally, we
also show that the wavelet decomposition module in SAMBA
filters specific EEG/MEG frequencies during translation for de-
noising, while the learnable HRF module models heterogeneity
in neurovascular coupling across brain regions.

II. METHODS

Electrophysiological recordings, denoted as X(t) =
{x1(t), . . . ,xN(t)}, represent the neural activity across N
parcels of the brain. Hemodynamic responses, represented as
Y (τ) = {y1(τ), . . . ,yM(τ)}, capture the blood oxygenation and
flow changes across M parcels, where M ≫ N due to the finer
spatial resolution offered by fMRI. However, the temporal
resolution of X is higher than that of Y .

A. Electrophysiological Activity to Hemodynamic Response

We elaborate on the translation from X(t) to Y (τ).
1) Temporal Smoothing with HRF learning: The HRF is

designed to model the latency and variability of blood flow
in response to neural activity. Due to significant variations inIC
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Fig. 1: SAMBA translates between MEG and fMRI modalities by upsampling and downsampling using wavelet decomposition and graph-attention modules in the
temporal and spatial domains respectively. The upper and bottom parts show the fMRI-to-MEG and MEG-to-fMRI prediction modules respectively.

neuronal density and metabolic demand across regions of the
brain, the HRF responses also vary across the brain [2, 11]. To
address this, we employ a parcel-specific HRFn(t), parameterized
by six learnable parameters HRFn(t) =

θ1

(︂
t
pr

)︂θ2
exp

(︂
− t−pr

θ3

)︂
−θ4

(︂
t

pu

)︂θ5
exp

(︂
− t−pu

θ6

)︂
(1)

where θ1 and θ4 are the amplitude of the response and undershoot
components, respectively, modulating the increase and decrease in
blood flow and oxygenation to the brain area activated following
neural activity. θ2 and θ5 represent the time-to-peak of the
response and undershoot components, respectively. θ3 and θ6
are the dispersion factors, influencing the width of the response
and undershoot curves. pr = (θ2 ·θ3), and pu = (θ5 ·θ6) denote
the peak times of the respective components. The learnable
parameters of the HRF model are inferred via a three-layer MLP
for each brain parcel. For each parcel n, the HRF is convolved
with the electrophysiological signal xn(t) to produce: x̃n(t) =
HRFn(t)∗xn(t), where ∗ denotes the convolution operation. This
convolution process smooths the electrophysiological signal into
a representation of the blood flow dynamics resulting from neural
activity.

2) Temporal Downsampling: To perform temporal downsam-
pling, we propose a unique architecture that compresses temporal
signals via a rich wavelet transform and then uses attention
to select the appropriate signal bands for the translation tasks.
The process involves constructing daughter wavelets by scaling
and translating the mother wavelet, ψ , by s and u respectively:
ψs,u(t) = ψ ((t −u)/s). Wavelet coefficients are computed by
convolving x̃n(t) with daughter wavelets cn(s,u) = x̃n(t)∗ψs,u(t).
At smaller scales, where higher frequencies are analyzed, more
translations u are required to perform the convolution, resulting in
a larger number of coefficients. Conversely, fewer translations are
necessary at larger scales, yielding fewer coefficients. Next, we
concatenate the scale-specific embeddings to form a multiscale
representation, expressed as zn =∥s αscn(s). Here, ∥ denotes
concatenation the of features, zn ∈ Rd and αs represents the
learnable attention weight allocated to the embedding at scale s
normalized by the Softmax function, indicating the significance
of features captured at that scale relative to others in the final
multiscale representation. The attention weights are normalized

using the Softmax function, transforming them into a probabilistic
distribution that identifies the most salient frequency bands in the
electrophysiological data.

3) Spatial Upsampling Module: In this module, we outline
our approach for translating data from a coarse-grained graph
of brain regions, denoted as GX = (V X ,EX ,W X ), derived from
electrophysiological measurements in the source modality, to a
fine-grained graph, GY = (VY ,EY ,WY ), which features a higher
spatial resolution using hemodynamic data from the target modal-
ity (Fig. 1c). Recall that our task is to translate N time-lapse elec-
trophysiological signals represented as X(t) = {x1(t), . . . ,xN(t)},
to M time-lapse hemodynamic signals Y (τ) = {y1(τ), . . . ,yM(τ)}.
To achieve this, our source graph contains N nodes (|VX | = N)
and our target graph contains M nodes (|VY | = M), where
M ≫ N. Here, the edge weights, W X , in the source graph, are
assigned based on the cosine similarity between timelapse elec-
trophysiological signals: W X

pq = (xp(t)− x̄p) ·(xq(t)− x̄q)/∥xp(t)−
x̄p∥∥xq(t)− x̄q∥, where x̄p is the mean of the signal xp(t). We
input the latent representations {z j}N

j=1 as node features into a
GAT layer, which computes hidden features of nodes

hX
n (τ) = σ

(︂
1
K ∑

K
k=1 ∑ j∈N (n) β

(k)
n j W (k)z j(τ)

)︂
, (2)

where K is the number of attention heads, β (k) are the attention
coefficients, and W (k) are the head-specific weight matrices. We
then follow the standard GAT implementation [4, 22]. Edge
weights in the target graph GY are based on the cosine sim-
ilarity of hemodynamic signals: WY

pq = (yp(τ)− ȳp) · (yq(τ)−
ȳq)/∥yp(τ)− ȳp∥∥yq(τ)− ȳq∥ where, ȳp denotes the mean of
the hemodynamic signal in parcel p. The node features in GY
are defined using single-layer feed-forward networks, {φm}M

m=1,
which map the hidden representations {hX

n }N
n=1 in GX to the nodes

in GY . Each network φm takes the aggregated representations
{hX

i }i∈χm as input, where χm is the subset of nodes from the
same neuroanatomical region in the source graph. For example,
to obtain the node features of a visual cortex parcel in the target
graph, GY , we use hidden representations of all available visual
cortex parcels in the source graph, GX . We then used a GAT layer
to aggregate the features in the target graph:

hY
m(τ) = σ

(︂
1
K ∑

K
k=1 ∑ j∈N (m) γ

(k)
m j W

(k)φm({hX
i }i∈χm)

)︂
, (3)
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TABLE I: Evaluation of translation using Spearman correlation for minute and second predictions between fMRI, MEG, and EEG modalities.

MEG → fMRI EEG→fMRI
Minute Second Minute Second

a)
E

le
ct

ro
ph

ys
io

lo
gi

ca
l

to
H

em
od

yn
am

ic

MLP 0.05 0.12 0.04 0.10
1D-CNN 0.07 0.14 0.09 0.14
LSTM 0.26 0.39 0.18 0.31
Transformer 0.34 0.60 0.19 0.28

No Wavelet 0.14 0.27 0.12 0.24
No LSTM 0.18 0.30 0.11 0.23
No LSTM: Avg. 2 samples 0.36 0.65 0.26 0.36
HRF-Wavelet-MLP-LSTM 0.37 0.66 0.28 0.39
Transformer instead of LSTM 0.33 0.63 0.23 0.37
Fixed HRF 0.36 0.60 0.28 0.41
MSE-Loss instead of Cosine 0.36 0.58 0.25 0.41
SAMBA 0.38 0.63 0.29 0.43

Transformer 0.33 0.62 0.14 0.30
SAMBA 0.39 0.67 0.28 0.44

fMRI→MEG fMRI→EEG
Minute Second Minute Second

b)
H

em
od

yn
am

ic
to

E
le

ct
ro

.

MLP 0.05 0.11 0.05 0.10
1D-CNN 0.06 0.16 0.07 0.15
LSTM 0.13 0.25 0.11 0.22
Transformer 0.15 0.30 0.11 0.28
No Pseud HRF 0.21 0.34 0.09 0.20
No Skip Loss 0.15 0.24 0.10 0.19
SAMBA 0.21 0.35 0.15 0.33

Transformer 0.11 0.26 0.10 0.26
SAMBA 0.19 0.31 0.13 0.27

We built a baseline using five methods between withheld time intervals for
all subjects and subject pairs (blue-coded).

where, γ(k) are normalized attention coefficients, N (m) is neigh-
boring nodes of m, and W (k) are unique weight matrices for
each attention head. Ultimately, this module generates a series
of high-resolution node representations, {hY

m}M
m=1, which produce

the desired output, Y (τ).
4) Hemodynamic Sequence Generation via RNNs: Upon spa-

tially upscaling, the refined high-resolution node representations,
denoted as hY

m, are fed into a recurrent model in the final stage.
To this end, we employ a LSTM network, since it is well-
suited for modeling the autoregressive characteristics inherent
in these temporal sequences. The LSTM processes the sequence
of node representations, hY

m(τ), to predict hemodynamic activity,
Ŷ (τ) = {y1̂(τ), · · · , ŷM(τ)}, as follows:

ŷm(τo +1) = LSTM(ŷm(τo),hY
m(τo +1)), (4)

where m = 1, · · ·M and ŷm(τo+1) is the estimated hemodynamic
activity in the m-th parcel at time τ = τo + 1. This estimation
relies on the previously predicted τo, denoted as ŷm(τo), and the
current node representation, hY

m(τo +1).

B. Hemodynamic Response to Electrophysiological Activity

Here, we describe our methodology for converting hemody-
namic activity, Y (τ), to electrophysiological activity, X(t).

1) Spatial Downsampling Module: To perform spatial down-
sampling, we invert and adapt the methodology detailed in the
graph upsampling section, converting a fine-grained hemody-
namic graph, GY , containing M nodes, into a coarse-grained
electrophysiological graph, GX , containing N nodes, where M ≫
N. Here, a GAT layer aggregates node features from the brain
activity graph GY , which are then mapped to a coarser target
graph GX using linear layers.

2) Temporal Upsampling Module: Given hX
n (τ), as the spa-

tially downsampled hemodynamic data, we now aim to perform
temporal upsampling. We first model the reverse process of
wavelet decomposition by estimating the wavelet coefficients at
various wavelet coefficient scales and performing the inverse
wavelet decomposition. We achieve this in two steps. First, we
estimate the wavelet coefficients using a set of linear layers
{ fs}S

s=1. Each layer fs maps the input signal to the wavelet
coefficient space at a specific scale: ĉ(s,u) = fs(hX

n (τ)), where
ĉ(s,u) represents the estimated wavelet coefficient at scale s and

position u. To reconstruct n-th HRF smoothed signal, we then
perform wavelet reconstruction using the estimated coefficients:

x̃n(t) = ∑s∈S ∑u∈U ĉ(s,u)ψs,u(t), (5)

where ψs,u(t) denotes the daughter wavelets obtained by scal-
ing and translating the mother wavelet ψ by factors of s and
u, respectively. However, to ensure accurate wavelet coefficient
estimation, we employ a regularization strategy using wavelet
coefficient skip losses (between blocks 1 and 6 in Fig. 1). This
function penalizes the network for discrepancies between the true
wavelet coefficients c(s,u) from the electrophysiological, and the
estimated coefficients ĉ(s,u):

Lreg =
1

|S |
1

|U | ∑s∈S ∑u∈U (c(s,u)− ĉ(s,u))2. (6)

3) Deconvolution using Pseudo-inverse HRF: We now aim
to build a pseudo-inverse HRF function to estimate the original
neural signals from smoothed HRF. Since the double gamma
form of the HRF function is not invertible, we estimate the
original temporal dimension of MEG or EEG (at 200 Hz)
using per-parcel single kernel learning via 1D transpose con-
volution. The reconstruction is mathematically represented as:
x̂n(t) = DeConv1Dn(x̃n(t)), where DeConv1Dn is the parcel-
specific transpose convolution with the single learnable kernel.

4) Electrophysiological Sequence Generation with RNNs:
Upon temporal reconstruction, the refined low-resolution node
representations, denoted as hX

n , are fed into a recurrent model
in the final stage of translation from hemodynamic activity to
electrophysiological signals in the brain. To this end, we employ
an LSTM to process the sequence of node representations, hX

n (t),
to predict electrophysiological activity, X̂(t) = {x1̂(t), · · · , x̂N(t)},
akin to Eq. 4.

C. Loss Formulation

We employed the cosine similarity loss function to train
the model to align the predicted signal with the target signal.
In hemodynamic mapping to electrophysiological, for example,
given the predicted m-th parcel ŷm, the loss is defined as:

Lmatch = ∑
M
m=1

(︁
1− ŷm·ym

∥ŷm∥2 ∥ym∥2

)︁
, (7)

where, M is the number of parcels, ∥ŷm∥2, and ∥ym∥2 are the L2
norms of ŷm and ym, respectively. Here, in addition to the cosine
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Fig. 2: PyCortex [8] visualizations of fMRI activity on the unfolded brain surface compare ground
truth (top row) with translations via SAMBA (middle) and the SOTA transformer model (bottom),
as quantitatively shown in Table I. Timestamps (mm:ss) correspond to the Forrest Gump movie.
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Fig. 3: Wavelet attention in a, and loss dynamics in b.
c) Inferred HRF undershoot and response dispersion.

loss we also regularized the network using skip loss, as in Eq. 6:
λLmatch +(1−λ )Lreg. To map MEG/EEG to fMRI we only train
the model with the cosine loss Eq. 7, given ŷn and yn.

III. RESULTS

We conducted experiments using two datasets: (1) StudyFor-
rest [9, 14], comprising MEG and fMRI data, and (2) Nat-
uralistic Viewing [20], containing EEG and fMRI recordings.
Both datasets include fMRI data aligned to the fsaverage surface
(10,242 vertices per hemisphere) and collected at 0.5 Hz (2s TR).
MEG and EEG data were source-reconstructed onto the same
surface, initially sampled at 600 Hz and resampled to 200 Hz.
We used Schaefer1 parcellations, with 200 regions for MEG and
500 for fMRI, to model spatial connectivity as a graph. Data from
each subject were segmented into randomly selected one-minute
samples, yielding 106 MEG-fMRI and 100 EEG-fMRI samples
per subject. For classification tasks, we utilized movie labels from
the EEG-fMRI dataset. To this end, we evaluate SAMBA on four
translation tasks: (1) fMRI-to-MEG, (2) fMRI-to-EEG, (3) MEG-
to-fMRI, and (4) EEG-to-fMRI. We then explore our SAMBA
model’s evaluation of the classification task to detect eight distinct
movies in the Naturalistic Viewing dataset.

In Table I, we compare SAMBA’s performance against sev-
eral baseline architectures, including convolutional, transformer,
recurrent, and feed-forward networks. We also include ablation
studies of the SAMBA architecture, where key components such
as wavelet decomposition, the learnable HRF, and the recurrent
layer are systematically removed or replaced. Specifically, in
Table Ia we assess performance in translating electrophysiological
data to hemodynamic data, and in Table Ib, we report results
for the reverse task. The primary evaluation metric is Spearman
correlation, averaged across all Schaefer parcels, between the
predicted and ground truth time-lapse signals in both long (1 min)
and short (15 sec) intervals of withheld timepoints. The evaluate
SAMBA when trained across all fMRI-EEG/MEG subject pairs
(black text), as well as a subject-specific SAMBA model, where a
separate model is trained for each subject pair (blue text), and the
reported Spearman correlations are averaged across all withheld
timepoints for each subject. SAMBA outperforms all baseline
models across all tasks, with the transformer model by Vaswani
et al. [21] achieving the second-best performance.

Fig. 2 illustrates SAMBA’s performance in translating MEG
to fMRI data, using pycortex[8] from the StudyForest dataset.
The results, highlighted specifically by red circles, indicate that
SAMBA effectively recovers fMRI signals from MEG data
compared to SOTA (transformer), even in the test set.

Fig. 3a illustrates the dynamics of wavelet decomposition
attention and wavelet reconstruction skip loss in our model.
Based on the attention intensity values, our models primarily
focus on lower frequencies (4-8 Hz and 0-4 Hz), likely due to
the higher signal-to-noise ratio at these frequencies compared to
higher frequencies. Fig. 3b presents variations in the details of the
skip-loss dynamics during wavelet reconstruction. To highlight
SAMBA’s learned representations, we added a classification
head to identify eight movies from the Naturalistic Viewing
dataset [20], comparing performance with baseline methods in
Table II. Using K-fold cross-validation, we withheld random
samples per fold, applying a 65-15-20 train-validation-test split.
Notably, our model achieves a 10.54% improvement in the EEG
to fMRI classification tasks over the baseline.

TABLE II: Movie classification accuracy results.

EEG-to-fMRI fMRI-to-EEG

1D-CNN 48.83% 30.69%

LSTM 53.71% 37.09%

Transformer 51.04% 38.24%

SAMBA 61.58% 46.50%

Our model also offers neuroscientific interpretations. Here,
we outline key findings from the best-performing MEG-to-fMRI
model. Fig. 3c displays the inferred HRF parameters for each
brain parcel. This figure shows the variation in HRF response and
undershoot dispersion across different brain regions, highlighting
the diversity in oxygenation and deoxygenation levels [11]. The
left somatomotor network exhibits minimal response dispersion
compared to the cingulate, whereas the parietal lobe regions show
greater undershoot dispersion than the right somatomotor.

IV. CONCLUSIONS

This paper introduces SAMBA, a framework designed to
address spatiotemporal trade-offs in multimodal brain activity
translation. Using wavelet-attention-based temporal encoding and
decoding with context-aware graph upsampling and downsam-
pling, SAMBA outperforms baseline methods like transformers.
The framework’s translation task yields rich representations use-
ful for downstream tasks like classification.
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